This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an edge E which does not contain vertex U is added to a graph G (yielding a graph F ), the degree of U is the same in both graphs. (Contributed by AV, 2-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p1evtxdeq.v | |- V = ( Vtx ` G ) |
|
| p1evtxdeq.i | |- I = ( iEdg ` G ) |
||
| p1evtxdeq.f | |- ( ph -> Fun I ) |
||
| p1evtxdeq.fv | |- ( ph -> ( Vtx ` F ) = V ) |
||
| p1evtxdeq.fi | |- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) ) |
||
| p1evtxdeq.k | |- ( ph -> K e. X ) |
||
| p1evtxdeq.d | |- ( ph -> K e/ dom I ) |
||
| p1evtxdeq.u | |- ( ph -> U e. V ) |
||
| p1evtxdeq.e | |- ( ph -> E e. Y ) |
||
| p1evtxdeq.n | |- ( ph -> U e/ E ) |
||
| Assertion | p1evtxdeq | |- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.v | |- V = ( Vtx ` G ) |
|
| 2 | p1evtxdeq.i | |- I = ( iEdg ` G ) |
|
| 3 | p1evtxdeq.f | |- ( ph -> Fun I ) |
|
| 4 | p1evtxdeq.fv | |- ( ph -> ( Vtx ` F ) = V ) |
|
| 5 | p1evtxdeq.fi | |- ( ph -> ( iEdg ` F ) = ( I u. { <. K , E >. } ) ) |
|
| 6 | p1evtxdeq.k | |- ( ph -> K e. X ) |
|
| 7 | p1evtxdeq.d | |- ( ph -> K e/ dom I ) |
|
| 8 | p1evtxdeq.u | |- ( ph -> U e. V ) |
|
| 9 | p1evtxdeq.e | |- ( ph -> E e. Y ) |
|
| 10 | p1evtxdeq.n | |- ( ph -> U e/ E ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 | p1evtxdeqlem | |- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) ) |
| 12 | 1 | fvexi | |- V e. _V |
| 13 | snex | |- { <. K , E >. } e. _V |
|
| 14 | 12 13 | pm3.2i | |- ( V e. _V /\ { <. K , E >. } e. _V ) |
| 15 | opiedgfv | |- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } ) |
|
| 16 | 14 15 | mp1i | |- ( ph -> ( iEdg ` <. V , { <. K , E >. } >. ) = { <. K , E >. } ) |
| 17 | opvtxfv | |- ( ( V e. _V /\ { <. K , E >. } e. _V ) -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
|
| 18 | 14 17 | mp1i | |- ( ph -> ( Vtx ` <. V , { <. K , E >. } >. ) = V ) |
| 19 | 16 18 6 8 9 10 | 1hevtxdg0 | |- ( ph -> ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) = 0 ) |
| 20 | 19 | oveq2d | |- ( ph -> ( ( ( VtxDeg ` G ) ` U ) +e ( ( VtxDeg ` <. V , { <. K , E >. } >. ) ` U ) ) = ( ( ( VtxDeg ` G ) ` U ) +e 0 ) ) |
| 21 | 1 | vtxdgelxnn0 | |- ( U e. V -> ( ( VtxDeg ` G ) ` U ) e. NN0* ) |
| 22 | xnn0xr | |- ( ( ( VtxDeg ` G ) ` U ) e. NN0* -> ( ( VtxDeg ` G ) ` U ) e. RR* ) |
|
| 23 | 8 21 22 | 3syl | |- ( ph -> ( ( VtxDeg ` G ) ` U ) e. RR* ) |
| 24 | 23 | xaddridd | |- ( ph -> ( ( ( VtxDeg ` G ) ` U ) +e 0 ) = ( ( VtxDeg ` G ) ` U ) ) |
| 25 | 11 20 24 | 3eqtrd | |- ( ph -> ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) ) |