This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) Obsolete theorem, use clmvs1 together with cvsclm instead. (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vciOLD.1 | |- G = ( 1st ` W ) |
|
| vciOLD.2 | |- S = ( 2nd ` W ) |
||
| vciOLD.3 | |- X = ran G |
||
| Assertion | vcidOLD | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 | |- G = ( 1st ` W ) |
|
| 2 | vciOLD.2 | |- S = ( 2nd ` W ) |
|
| 3 | vciOLD.3 | |- X = ran G |
|
| 4 | 1 2 3 | vciOLD | |- ( W e. CVecOLD -> ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) ) |
| 5 | simpl | |- ( ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) -> ( 1 S x ) = x ) |
|
| 6 | 5 | ralimi | |- ( A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) -> A. x e. X ( 1 S x ) = x ) |
| 7 | 6 | 3ad2ant3 | |- ( ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) -> A. x e. X ( 1 S x ) = x ) |
| 8 | 4 7 | syl | |- ( W e. CVecOLD -> A. x e. X ( 1 S x ) = x ) |
| 9 | oveq2 | |- ( x = A -> ( 1 S x ) = ( 1 S A ) ) |
|
| 10 | id | |- ( x = A -> x = A ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = A -> ( ( 1 S x ) = x <-> ( 1 S A ) = A ) ) |
| 12 | 11 | rspccva | |- ( ( A. x e. X ( 1 S x ) = x /\ A e. X ) -> ( 1 S A ) = A ) |
| 13 | 8 12 | sylan | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) |