This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vciOLD.1 | |- G = ( 1st ` W ) |
|
| vciOLD.2 | |- S = ( 2nd ` W ) |
||
| vciOLD.3 | |- X = ran G |
||
| Assertion | vcdir | |- ( ( W e. CVecOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vciOLD.1 | |- G = ( 1st ` W ) |
|
| 2 | vciOLD.2 | |- S = ( 2nd ` W ) |
|
| 3 | vciOLD.3 | |- X = ran G |
|
| 4 | 1 2 3 | vciOLD | |- ( W e. CVecOLD -> ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) ) |
| 5 | simpl | |- ( ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) -> ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
|
| 6 | 5 | ralimi | |- ( A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) -> A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 7 | 6 | adantl | |- ( ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) -> A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 8 | 7 | ralimi | |- ( A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) -> A. y e. CC A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 9 | 8 | adantl | |- ( ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) -> A. y e. CC A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 10 | 9 | ralimi | |- ( A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) -> A. x e. X A. y e. CC A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( G e. AbelOp /\ S : ( CC X. X ) --> X /\ A. x e. X ( ( 1 S x ) = x /\ A. y e. CC ( A. z e. X ( y S ( x G z ) ) = ( ( y S x ) G ( y S z ) ) /\ A. z e. CC ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) /\ ( ( y x. z ) S x ) = ( y S ( z S x ) ) ) ) ) ) -> A. x e. X A. y e. CC A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 12 | 4 11 | syl | |- ( W e. CVecOLD -> A. x e. X A. y e. CC A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) ) |
| 13 | oveq2 | |- ( x = C -> ( ( y + z ) S x ) = ( ( y + z ) S C ) ) |
|
| 14 | oveq2 | |- ( x = C -> ( y S x ) = ( y S C ) ) |
|
| 15 | oveq2 | |- ( x = C -> ( z S x ) = ( z S C ) ) |
|
| 16 | 14 15 | oveq12d | |- ( x = C -> ( ( y S x ) G ( z S x ) ) = ( ( y S C ) G ( z S C ) ) ) |
| 17 | 13 16 | eqeq12d | |- ( x = C -> ( ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) <-> ( ( y + z ) S C ) = ( ( y S C ) G ( z S C ) ) ) ) |
| 18 | oveq1 | |- ( y = A -> ( y + z ) = ( A + z ) ) |
|
| 19 | 18 | oveq1d | |- ( y = A -> ( ( y + z ) S C ) = ( ( A + z ) S C ) ) |
| 20 | oveq1 | |- ( y = A -> ( y S C ) = ( A S C ) ) |
|
| 21 | 20 | oveq1d | |- ( y = A -> ( ( y S C ) G ( z S C ) ) = ( ( A S C ) G ( z S C ) ) ) |
| 22 | 19 21 | eqeq12d | |- ( y = A -> ( ( ( y + z ) S C ) = ( ( y S C ) G ( z S C ) ) <-> ( ( A + z ) S C ) = ( ( A S C ) G ( z S C ) ) ) ) |
| 23 | oveq2 | |- ( z = B -> ( A + z ) = ( A + B ) ) |
|
| 24 | 23 | oveq1d | |- ( z = B -> ( ( A + z ) S C ) = ( ( A + B ) S C ) ) |
| 25 | oveq1 | |- ( z = B -> ( z S C ) = ( B S C ) ) |
|
| 26 | 25 | oveq2d | |- ( z = B -> ( ( A S C ) G ( z S C ) ) = ( ( A S C ) G ( B S C ) ) ) |
| 27 | 24 26 | eqeq12d | |- ( z = B -> ( ( ( A + z ) S C ) = ( ( A S C ) G ( z S C ) ) <-> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) ) |
| 28 | 17 22 27 | rspc3v | |- ( ( C e. X /\ A e. CC /\ B e. CC ) -> ( A. x e. X A. y e. CC A. z e. CC ( ( y + z ) S x ) = ( ( y S x ) G ( z S x ) ) -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) ) |
| 29 | 12 28 | syl5 | |- ( ( C e. X /\ A e. CC /\ B e. CC ) -> ( W e. CVecOLD -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) ) |
| 30 | 29 | 3coml | |- ( ( A e. CC /\ B e. CC /\ C e. X ) -> ( W e. CVecOLD -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) ) |
| 31 | 30 | impcom | |- ( ( W e. CVecOLD /\ ( A e. CC /\ B e. CC /\ C e. X ) ) -> ( ( A + B ) S C ) = ( ( A S C ) G ( B S C ) ) ) |