This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vc0.1 | |- G = ( 1st ` W ) |
|
| vc0.2 | |- S = ( 2nd ` W ) |
||
| vc0.3 | |- X = ran G |
||
| vc0.4 | |- Z = ( GId ` G ) |
||
| Assertion | vc0 | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vc0.1 | |- G = ( 1st ` W ) |
|
| 2 | vc0.2 | |- S = ( 2nd ` W ) |
|
| 3 | vc0.3 | |- X = ran G |
|
| 4 | vc0.4 | |- Z = ( GId ` G ) |
|
| 5 | 1 3 4 | vc0rid | |- ( ( W e. CVecOLD /\ A e. X ) -> ( A G Z ) = A ) |
| 6 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
| 7 | 6 | oveq1i | |- ( ( 1 + 0 ) S A ) = ( 1 S A ) |
| 8 | 0cn | |- 0 e. CC |
|
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | 1 2 3 | vcdir | |- ( ( W e. CVecOLD /\ ( 1 e. CC /\ 0 e. CC /\ A e. X ) ) -> ( ( 1 + 0 ) S A ) = ( ( 1 S A ) G ( 0 S A ) ) ) |
| 11 | 9 10 | mp3anr1 | |- ( ( W e. CVecOLD /\ ( 0 e. CC /\ A e. X ) ) -> ( ( 1 + 0 ) S A ) = ( ( 1 S A ) G ( 0 S A ) ) ) |
| 12 | 8 11 | mpanr1 | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 + 0 ) S A ) = ( ( 1 S A ) G ( 0 S A ) ) ) |
| 13 | 1 2 3 | vcidOLD | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) |
| 14 | 7 12 13 | 3eqtr3a | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 0 S A ) ) = A ) |
| 15 | 13 | oveq1d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 0 S A ) ) = ( A G ( 0 S A ) ) ) |
| 16 | 5 14 15 | 3eqtr2rd | |- ( ( W e. CVecOLD /\ A e. X ) -> ( A G ( 0 S A ) ) = ( A G Z ) ) |
| 17 | 1 2 3 | vccl | |- ( ( W e. CVecOLD /\ 0 e. CC /\ A e. X ) -> ( 0 S A ) e. X ) |
| 18 | 8 17 | mp3an2 | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) e. X ) |
| 19 | 1 3 4 | vczcl | |- ( W e. CVecOLD -> Z e. X ) |
| 20 | 19 | adantr | |- ( ( W e. CVecOLD /\ A e. X ) -> Z e. X ) |
| 21 | simpr | |- ( ( W e. CVecOLD /\ A e. X ) -> A e. X ) |
|
| 22 | 18 20 21 | 3jca | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 0 S A ) e. X /\ Z e. X /\ A e. X ) ) |
| 23 | 1 3 | vclcan | |- ( ( W e. CVecOLD /\ ( ( 0 S A ) e. X /\ Z e. X /\ A e. X ) ) -> ( ( A G ( 0 S A ) ) = ( A G Z ) <-> ( 0 S A ) = Z ) ) |
| 24 | 22 23 | syldan | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( A G ( 0 S A ) ) = ( A G Z ) <-> ( 0 S A ) = Z ) ) |
| 25 | 16 24 | mpbid | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) = Z ) |