This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, any entourage V is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustssco | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( V o. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | |- V C_ ( V u. ( V o. V ) ) |
|
| 2 | coires1 | |- ( V o. ( _I |` X ) ) = ( V |` X ) |
|
| 3 | ustrel | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> Rel V ) |
|
| 4 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( X X. X ) ) |
|
| 5 | dmss | |- ( V C_ ( X X. X ) -> dom V C_ dom ( X X. X ) ) |
|
| 6 | 4 5 | syl | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> dom V C_ dom ( X X. X ) ) |
| 7 | dmxpid | |- dom ( X X. X ) = X |
|
| 8 | 6 7 | sseqtrdi | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> dom V C_ X ) |
| 9 | relssres | |- ( ( Rel V /\ dom V C_ X ) -> ( V |` X ) = V ) |
|
| 10 | 3 8 9 | syl2anc | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( V |` X ) = V ) |
| 11 | 2 10 | eqtrid | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( V o. ( _I |` X ) ) = V ) |
| 12 | 11 | uneq1d | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( ( V o. ( _I |` X ) ) u. ( V o. V ) ) = ( V u. ( V o. V ) ) ) |
| 13 | 1 12 | sseqtrrid | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( ( V o. ( _I |` X ) ) u. ( V o. V ) ) ) |
| 14 | coundi | |- ( V o. ( ( _I |` X ) u. V ) ) = ( ( V o. ( _I |` X ) ) u. ( V o. V ) ) |
|
| 15 | 13 14 | sseqtrrdi | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( V o. ( ( _I |` X ) u. V ) ) ) |
| 16 | ustdiag | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( _I |` X ) C_ V ) |
|
| 17 | ssequn1 | |- ( ( _I |` X ) C_ V <-> ( ( _I |` X ) u. V ) = V ) |
|
| 18 | 16 17 | sylib | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( ( _I |` X ) u. V ) = V ) |
| 19 | 18 | coeq2d | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( V o. ( ( _I |` X ) u. V ) ) = ( V o. V ) ) |
| 20 | 15 19 | sseqtrd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( V o. V ) ) |