This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than a third of V . (Contributed by Thierry Arnoux, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustex3sym | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ ( w o. ( w o. w ) ) C_ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustex2sym | |- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> E. w e. U ( `' w = w /\ ( w o. w ) C_ v ) ) |
|
| 2 | 1 | ad4ant13 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) -> E. w e. U ( `' w = w /\ ( w o. w ) C_ v ) ) |
| 3 | simprl | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> `' w = w ) |
|
| 4 | simp-5l | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> U e. ( UnifOn ` X ) ) |
|
| 5 | simplr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> w e. U ) |
|
| 6 | ustssco | |- ( ( U e. ( UnifOn ` X ) /\ w e. U ) -> w C_ ( w o. w ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> w C_ ( w o. w ) ) |
| 8 | simprr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> ( w o. w ) C_ v ) |
|
| 9 | coss2 | |- ( ( w o. w ) C_ v -> ( w o. ( w o. w ) ) C_ ( w o. v ) ) |
|
| 10 | 9 | adantl | |- ( ( w C_ ( w o. w ) /\ ( w o. w ) C_ v ) -> ( w o. ( w o. w ) ) C_ ( w o. v ) ) |
| 11 | sstr | |- ( ( w C_ ( w o. w ) /\ ( w o. w ) C_ v ) -> w C_ v ) |
|
| 12 | coss1 | |- ( w C_ v -> ( w o. v ) C_ ( v o. v ) ) |
|
| 13 | 11 12 | syl | |- ( ( w C_ ( w o. w ) /\ ( w o. w ) C_ v ) -> ( w o. v ) C_ ( v o. v ) ) |
| 14 | 10 13 | sstrd | |- ( ( w C_ ( w o. w ) /\ ( w o. w ) C_ v ) -> ( w o. ( w o. w ) ) C_ ( v o. v ) ) |
| 15 | 7 8 14 | syl2anc | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> ( w o. ( w o. w ) ) C_ ( v o. v ) ) |
| 16 | simpllr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> ( v o. v ) C_ V ) |
|
| 17 | 15 16 | sstrd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> ( w o. ( w o. w ) ) C_ V ) |
| 18 | 3 17 | jca | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ ( w o. w ) C_ v ) ) -> ( `' w = w /\ ( w o. ( w o. w ) ) C_ V ) ) |
| 19 | 18 | ex | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) -> ( ( `' w = w /\ ( w o. w ) C_ v ) -> ( `' w = w /\ ( w o. ( w o. w ) ) C_ V ) ) ) |
| 20 | 19 | reximdva | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) -> ( E. w e. U ( `' w = w /\ ( w o. w ) C_ v ) -> E. w e. U ( `' w = w /\ ( w o. ( w o. w ) ) C_ V ) ) ) |
| 21 | 2 20 | mpd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) -> E. w e. U ( `' w = w /\ ( w o. ( w o. w ) ) C_ V ) ) |
| 22 | ustexhalf | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. v e. U ( v o. v ) C_ V ) |
|
| 23 | 21 22 | r19.29a | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ ( w o. ( w o. w ) ) C_ V ) ) |