This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than half V . (Contributed by Thierry Arnoux, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustex2sym | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ ( w o. w ) C_ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustexsym | |- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> E. w e. U ( `' w = w /\ w C_ v ) ) |
|
| 2 | 1 | ad4ant13 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) -> E. w e. U ( `' w = w /\ w C_ v ) ) |
| 3 | simprl | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ w C_ v ) ) -> `' w = w ) |
|
| 4 | coss1 | |- ( w C_ v -> ( w o. w ) C_ ( v o. w ) ) |
|
| 5 | coss2 | |- ( w C_ v -> ( v o. w ) C_ ( v o. v ) ) |
|
| 6 | 4 5 | sstrd | |- ( w C_ v -> ( w o. w ) C_ ( v o. v ) ) |
| 7 | 6 | ad2antll | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ w C_ v ) ) -> ( w o. w ) C_ ( v o. v ) ) |
| 8 | simpllr | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ w C_ v ) ) -> ( v o. v ) C_ V ) |
|
| 9 | 7 8 | sstrd | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ w C_ v ) ) -> ( w o. w ) C_ V ) |
| 10 | 3 9 | jca | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) /\ ( `' w = w /\ w C_ v ) ) -> ( `' w = w /\ ( w o. w ) C_ V ) ) |
| 11 | 10 | ex | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) /\ w e. U ) -> ( ( `' w = w /\ w C_ v ) -> ( `' w = w /\ ( w o. w ) C_ V ) ) ) |
| 12 | 11 | reximdva | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) -> ( E. w e. U ( `' w = w /\ w C_ v ) -> E. w e. U ( `' w = w /\ ( w o. w ) C_ V ) ) ) |
| 13 | 2 12 | mpd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ V e. U ) /\ v e. U ) /\ ( v o. v ) C_ V ) -> E. w e. U ( `' w = w /\ ( w o. w ) C_ V ) ) |
| 14 | ustexhalf | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. v e. U ( v o. v ) C_ V ) |
|
| 15 | 13 14 | r19.29a | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> E. w e. U ( `' w = w /\ ( w o. w ) C_ V ) ) |