This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than a third of V . (Contributed by Thierry Arnoux, 16-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustex3sym | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustex2sym | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) | |
| 2 | 1 | ad4ant13 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 3 | simprl | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ◡ 𝑤 = 𝑤 ) | |
| 4 | simp-5l | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 5 | simplr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → 𝑤 ∈ 𝑈 ) | |
| 6 | ustssco | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ) |
| 8 | simprr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) | |
| 9 | coss2 | ⊢ ( ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑤 ∘ 𝑣 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑤 ∘ 𝑣 ) ) |
| 11 | sstr | ⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → 𝑤 ⊆ 𝑣 ) | |
| 12 | coss1 | ⊢ ( 𝑤 ⊆ 𝑣 → ( 𝑤 ∘ 𝑣 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( 𝑤 ∘ 𝑣 ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 14 | 10 13 | sstrd | ⊢ ( ( 𝑤 ⊆ ( 𝑤 ∘ 𝑤 ) ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 15 | 7 8 14 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ ( 𝑣 ∘ 𝑣 ) ) |
| 16 | simpllr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) | |
| 17 | 15 16 | sstrd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) |
| 18 | 3 17 | jca | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |
| 19 | 18 | ex | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) ) |
| 20 | 19 | reximdva | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ( ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) ) |
| 21 | 2 20 | mpd | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |
| 22 | ustexhalf | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑣 ∈ 𝑈 ( 𝑣 ∘ 𝑣 ) ⊆ 𝑉 ) | |
| 23 | 21 22 | r19.29a | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ ( 𝑤 ∘ ( 𝑤 ∘ 𝑤 ) ) ⊆ 𝑉 ) ) |