This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustref | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A V A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- A = A |
|
| 2 | resieq | |- ( ( A e. X /\ A e. X ) -> ( A ( _I |` X ) A <-> A = A ) ) |
|
| 3 | 1 2 | mpbiri | |- ( ( A e. X /\ A e. X ) -> A ( _I |` X ) A ) |
| 4 | 3 | anidms | |- ( A e. X -> A ( _I |` X ) A ) |
| 5 | 4 | 3ad2ant3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A ( _I |` X ) A ) |
| 6 | ustdiag | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( _I |` X ) C_ V ) |
|
| 7 | 6 | ssbrd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( A ( _I |` X ) A -> A V A ) ) |
| 8 | 7 | 3adant3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> ( A ( _I |` X ) A -> A V A ) ) |
| 9 | 5 8 | mpd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A V A ) |