This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple pseudograph with one edge. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgr1e.v | |- V = ( Vtx ` G ) |
|
| uspgr1e.a | |- ( ph -> A e. X ) |
||
| uspgr1e.b | |- ( ph -> B e. V ) |
||
| uspgr1e.c | |- ( ph -> C e. V ) |
||
| uspgr1e.e | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
||
| Assertion | uspgr1e | |- ( ph -> G e. USPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgr1e.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgr1e.a | |- ( ph -> A e. X ) |
|
| 3 | uspgr1e.b | |- ( ph -> B e. V ) |
|
| 4 | uspgr1e.c | |- ( ph -> C e. V ) |
|
| 5 | uspgr1e.e | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
|
| 6 | prex | |- { B , C } e. _V |
|
| 7 | 6 | snid | |- { B , C } e. { { B , C } } |
| 8 | f1sng | |- ( ( A e. X /\ { B , C } e. { { B , C } } ) -> { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } ) |
|
| 9 | 2 7 8 | sylancl | |- ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } ) |
| 10 | 3 4 | prssd | |- ( ph -> { B , C } C_ V ) |
| 11 | 10 1 | sseqtrdi | |- ( ph -> { B , C } C_ ( Vtx ` G ) ) |
| 12 | 6 | elpw | |- ( { B , C } e. ~P ( Vtx ` G ) <-> { B , C } C_ ( Vtx ` G ) ) |
| 13 | 11 12 | sylibr | |- ( ph -> { B , C } e. ~P ( Vtx ` G ) ) |
| 14 | 13 3 | upgr1elem | |- ( ph -> { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 15 | f1ss | |- ( ( { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } /\ { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 16 | 9 14 15 | syl2anc | |- ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 17 | 6 | a1i | |- ( ph -> { B , C } e. _V ) |
| 18 | 17 3 | upgr1elem | |- ( ph -> { { B , C } } C_ { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 19 | f1ss | |- ( ( { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } /\ { { B , C } } C_ { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 20 | 9 18 19 | syl2anc | |- ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 21 | f1dm | |- ( { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } -> dom { <. A , { B , C } >. } = { A } ) |
|
| 22 | f1eq2 | |- ( dom { <. A , { B , C } >. } = { A } -> ( { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
|
| 23 | 20 21 22 | 3syl | |- ( ph -> ( { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 24 | 16 23 | mpbird | |- ( ph -> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 25 | 5 | dmeqd | |- ( ph -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) |
| 26 | eqidd | |- ( ph -> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } = { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 27 | 5 25 26 | f1eq123d | |- ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 28 | 24 27 | mpbird | |- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 29 | 1 | 1vgrex | |- ( B e. V -> G e. _V ) |
| 30 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 31 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 32 | 30 31 | isuspgr | |- ( G e. _V -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 33 | 3 29 32 | 3syl | |- ( ph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 34 | 28 33 | mpbird | |- ( ph -> G e. USPGraph ) |