This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upgr1e and uspgr1e . (Contributed by AV, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1elem.s | |- ( ph -> { B , C } e. S ) |
|
| upgr1elem.b | |- ( ph -> B e. W ) |
||
| Assertion | upgr1elem | |- ( ph -> { { B , C } } C_ { x e. ( S \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1elem.s | |- ( ph -> { B , C } e. S ) |
|
| 2 | upgr1elem.b | |- ( ph -> B e. W ) |
|
| 3 | fveq2 | |- ( x = { B , C } -> ( # ` x ) = ( # ` { B , C } ) ) |
|
| 4 | 3 | breq1d | |- ( x = { B , C } -> ( ( # ` x ) <_ 2 <-> ( # ` { B , C } ) <_ 2 ) ) |
| 5 | prnzg | |- ( B e. W -> { B , C } =/= (/) ) |
|
| 6 | 2 5 | syl | |- ( ph -> { B , C } =/= (/) ) |
| 7 | eldifsn | |- ( { B , C } e. ( S \ { (/) } ) <-> ( { B , C } e. S /\ { B , C } =/= (/) ) ) |
|
| 8 | 1 6 7 | sylanbrc | |- ( ph -> { B , C } e. ( S \ { (/) } ) ) |
| 9 | hashprlei | |- ( { B , C } e. Fin /\ ( # ` { B , C } ) <_ 2 ) |
|
| 10 | 9 | simpri | |- ( # ` { B , C } ) <_ 2 |
| 11 | 10 | a1i | |- ( ph -> ( # ` { B , C } ) <_ 2 ) |
| 12 | 4 8 11 | elrabd | |- ( ph -> { B , C } e. { x e. ( S \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 13 | 12 | snssd | |- ( ph -> { { B , C } } C_ { x e. ( S \ { (/) } ) | ( # ` x ) <_ 2 } ) |