This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1sng | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-> W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osng | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-onto-> { B } ) |
|
| 2 | f1of1 | |- ( { <. A , B >. } : { A } -1-1-onto-> { B } -> { <. A , B >. } : { A } -1-1-> { B } ) |
|
| 3 | 1 2 | syl | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-> { B } ) |
| 4 | snssi | |- ( B e. W -> { B } C_ W ) |
|
| 5 | 4 | adantl | |- ( ( A e. V /\ B e. W ) -> { B } C_ W ) |
| 6 | f1ss | |- ( ( { <. A , B >. } : { A } -1-1-> { B } /\ { B } C_ W ) -> { <. A , B >. } : { A } -1-1-> W ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } : { A } -1-1-> W ) |