This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgrumgruspgr | |- ( G e. USGraph <-> ( G e. UMGraph /\ G e. USPGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 2 | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
|
| 3 | 1 2 | jca | |- ( G e. USGraph -> ( G e. UMGraph /\ G e. USPGraph ) ) |
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 4 5 | uspgrf | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 7 | umgredgss | |- ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
|
| 8 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 9 | prprrab | |- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } |
|
| 10 | 9 | eqcomi | |- { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } = { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } |
| 11 | 7 8 10 | 3sstr3g | |- ( G e. UMGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 12 | f1ssr | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
|
| 13 | 6 11 12 | syl2anr | |- ( ( G e. UMGraph /\ G e. USPGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 14 | 4 5 | isusgr | |- ( G e. UMGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 15 | 14 | adantr | |- ( ( G e. UMGraph /\ G e. USPGraph ) -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 16 | 13 15 | mpbird | |- ( ( G e. UMGraph /\ G e. USPGraph ) -> G e. USGraph ) |
| 17 | 3 16 | impbii | |- ( G e. USGraph <-> ( G e. UMGraph /\ G e. USPGraph ) ) |