This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgrumgruspgr | ⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 2 | usgruspgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) ) |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | 4 5 | uspgrf | ⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 7 | umgredgss | ⊢ ( 𝐺 ∈ UMGraph → ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 8 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 9 | prprrab | ⊢ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } | |
| 10 | 9 | eqcomi | ⊢ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| 11 | 7 8 10 | 3sstr3g | ⊢ ( 𝐺 ∈ UMGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 12 | f1ssr | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 13 | 6 11 12 | syl2anr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 14 | 4 5 | isusgr | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) → 𝐺 ∈ USGraph ) |
| 17 | 3 16 | impbii | ⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) ) |