This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | isusgr | |- ( G e. USGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 4 | 2re | |- 2 e. RR |
|
| 5 | 4 | eqlei2 | |- ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) |
| 6 | 5 | a1i | |- ( x e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` x ) = 2 -> ( # ` x ) <_ 2 ) ) |
| 7 | 6 | ss2rabi | |- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } |
| 8 | f1ss | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } /\ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 9 | 7 8 | mpan2 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 10 | 3 9 | biimtrdi | |- ( G e. USGraph -> ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 11 | 1 2 | isuspgr | |- ( G e. USGraph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 12 | 10 11 | sylibrd | |- ( G e. USGraph -> ( G e. USGraph -> G e. USPGraph ) ) |
| 13 | 12 | pm2.43i | |- ( G e. USGraph -> G e. USPGraph ) |