This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prprrab | |- { x e. ( ~P A \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P A | ( # ` x ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ne0 | |- 2 =/= 0 |
|
| 2 | 1 | neii | |- -. 2 = 0 |
| 3 | eqeq1 | |- ( ( # ` x ) = 2 -> ( ( # ` x ) = 0 <-> 2 = 0 ) ) |
|
| 4 | 2 3 | mtbiri | |- ( ( # ` x ) = 2 -> -. ( # ` x ) = 0 ) |
| 5 | hasheq0 | |- ( x e. _V -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
|
| 6 | 5 | bicomd | |- ( x e. _V -> ( x = (/) <-> ( # ` x ) = 0 ) ) |
| 7 | 6 | necon3abid | |- ( x e. _V -> ( x =/= (/) <-> -. ( # ` x ) = 0 ) ) |
| 8 | 7 | elv | |- ( x =/= (/) <-> -. ( # ` x ) = 0 ) |
| 9 | 4 8 | sylibr | |- ( ( # ` x ) = 2 -> x =/= (/) ) |
| 10 | 9 | biantrud | |- ( ( # ` x ) = 2 -> ( x e. ~P A <-> ( x e. ~P A /\ x =/= (/) ) ) ) |
| 11 | eldifsn | |- ( x e. ( ~P A \ { (/) } ) <-> ( x e. ~P A /\ x =/= (/) ) ) |
|
| 12 | 10 11 | bitr4di | |- ( ( # ` x ) = 2 -> ( x e. ~P A <-> x e. ( ~P A \ { (/) } ) ) ) |
| 13 | 12 | pm5.32ri | |- ( ( x e. ~P A /\ ( # ` x ) = 2 ) <-> ( x e. ( ~P A \ { (/) } ) /\ ( # ` x ) = 2 ) ) |
| 14 | 13 | abbii | |- { x | ( x e. ~P A /\ ( # ` x ) = 2 ) } = { x | ( x e. ( ~P A \ { (/) } ) /\ ( # ` x ) = 2 ) } |
| 15 | df-rab | |- { x e. ~P A | ( # ` x ) = 2 } = { x | ( x e. ~P A /\ ( # ` x ) = 2 ) } |
|
| 16 | df-rab | |- { x e. ( ~P A \ { (/) } ) | ( # ` x ) = 2 } = { x | ( x e. ( ~P A \ { (/) } ) /\ ( # ` x ) = 2 ) } |
|
| 17 | 14 15 16 | 3eqtr4ri | |- { x e. ( ~P A \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P A | ( # ` x ) = 2 } |