This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgruspgrb | |- ( G e. USGraph <-> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
|
| 2 | edgusgr | |- ( ( G e. USGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ ( # ` e ) = 2 ) ) |
|
| 3 | 2 | simprd | |- ( ( G e. USGraph /\ e e. ( Edg ` G ) ) -> ( # ` e ) = 2 ) |
| 4 | 3 | ralrimiva | |- ( G e. USGraph -> A. e e. ( Edg ` G ) ( # ` e ) = 2 ) |
| 5 | 1 4 | jca | |- ( G e. USGraph -> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) |
| 6 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 7 | 6 | a1i | |- ( G e. USPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 8 | 7 | raleqdv | |- ( G e. USPGraph -> ( A. e e. ( Edg ` G ) ( # ` e ) = 2 <-> A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) ) |
| 9 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 10 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 11 | 9 10 | uspgrf | |- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 12 | f1f | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 13 | 12 | frnd | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 14 | ssel2 | |- ( ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ y e. ran ( iEdg ` G ) ) -> y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 15 | 14 | expcom | |- ( y e. ran ( iEdg ` G ) -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 16 | fveqeq2 | |- ( e = y -> ( ( # ` e ) = 2 <-> ( # ` y ) = 2 ) ) |
|
| 17 | 16 | rspcv | |- ( y e. ran ( iEdg ` G ) -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( # ` y ) = 2 ) ) |
| 18 | fveq2 | |- ( x = y -> ( # ` x ) = ( # ` y ) ) |
|
| 19 | 18 | breq1d | |- ( x = y -> ( ( # ` x ) <_ 2 <-> ( # ` y ) <_ 2 ) ) |
| 20 | 19 | elrab | |- ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) <_ 2 ) ) |
| 21 | eldifi | |- ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) -> y e. ~P ( Vtx ` G ) ) |
|
| 22 | 21 | anim1i | |- ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) = 2 ) -> ( y e. ~P ( Vtx ` G ) /\ ( # ` y ) = 2 ) ) |
| 23 | fveqeq2 | |- ( x = y -> ( ( # ` x ) = 2 <-> ( # ` y ) = 2 ) ) |
|
| 24 | 23 | elrab | |- ( y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( y e. ~P ( Vtx ` G ) /\ ( # ` y ) = 2 ) ) |
| 25 | 22 24 | sylibr | |- ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) = 2 ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 26 | 25 | ex | |- ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 27 | 26 | adantr | |- ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) <_ 2 ) -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 28 | 20 27 | sylbi | |- ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 29 | 17 28 | syl9 | |- ( y e. ran ( iEdg ` G ) -> ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) |
| 30 | 15 29 | syld | |- ( y e. ran ( iEdg ` G ) -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) |
| 31 | 30 | com13 | |- ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( y e. ran ( iEdg ` G ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) |
| 32 | 31 | imp | |- ( ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( y e. ran ( iEdg ` G ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 33 | 32 | ssrdv | |- ( ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 34 | 33 | ex | |- ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 35 | 13 34 | mpan9 | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 36 | f1ssr | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
|
| 37 | 35 36 | syldan | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 38 | 37 | ex | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 39 | 11 38 | syl | |- ( G e. USPGraph -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 40 | 8 39 | sylbid | |- ( G e. USPGraph -> ( A. e e. ( Edg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 41 | 40 | imp | |- ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 42 | 9 10 | isusgrs | |- ( G e. USPGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 43 | 42 | adantr | |- ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 44 | 41 43 | mpbird | |- ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> G e. USGraph ) |
| 45 | 5 44 | impbii | |- ( G e. USGraph <-> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) |