This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpwdifsn | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S e. ~P ( V \ { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S C_ V ) |
|
| 2 | 1 | sselda | |- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x e. V ) |
| 3 | df-nel | |- ( A e/ S <-> -. A e. S ) |
|
| 4 | 3 | biimpi | |- ( A e/ S -> -. A e. S ) |
| 5 | 4 | 3ad2ant3 | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> -. A e. S ) |
| 6 | 5 | anim1ci | |- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> ( x e. S /\ -. A e. S ) ) |
| 7 | nelne2 | |- ( ( x e. S /\ -. A e. S ) -> x =/= A ) |
|
| 8 | 6 7 | syl | |- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x =/= A ) |
| 9 | eldifsn | |- ( x e. ( V \ { A } ) <-> ( x e. V /\ x =/= A ) ) |
|
| 10 | 2 8 9 | sylanbrc | |- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x e. ( V \ { A } ) ) |
| 11 | 10 | ex | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> ( x e. S -> x e. ( V \ { A } ) ) ) |
| 12 | 11 | ssrdv | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S C_ ( V \ { A } ) ) |
| 13 | elpwg | |- ( S e. W -> ( S e. ~P ( V \ { A } ) <-> S C_ ( V \ { A } ) ) ) |
|
| 14 | 13 | 3ad2ant1 | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> ( S e. ~P ( V \ { A } ) <-> S C_ ( V \ { A } ) ) ) |
| 15 | 12 14 | mpbird | |- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S e. ~P ( V \ { A } ) ) |