This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | edgupgr | |- ( ( G e. UPGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 2 | 1 | a1i | |- ( G e. UPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 3 | 2 | eleq2d | |- ( G e. UPGraph -> ( E e. ( Edg ` G ) <-> E e. ran ( iEdg ` G ) ) ) |
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 4 5 | upgrf | |- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 7 | 6 | frnd | |- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 8 | 7 | sseld | |- ( G e. UPGraph -> ( E e. ran ( iEdg ` G ) -> E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 9 | fveq2 | |- ( x = E -> ( # ` x ) = ( # ` E ) ) |
|
| 10 | 9 | breq1d | |- ( x = E -> ( ( # ` x ) <_ 2 <-> ( # ` E ) <_ 2 ) ) |
| 11 | 10 | elrab | |- ( E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) ) |
| 12 | eldifsn | |- ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) <-> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) ) |
|
| 13 | 12 | biimpi | |- ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) ) |
| 14 | 13 | anim1i | |- ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) /\ ( # ` E ) <_ 2 ) ) |
| 15 | df-3an | |- ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) <-> ( ( E e. ~P ( Vtx ` G ) /\ E =/= (/) ) /\ ( # ` E ) <_ 2 ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) |
| 17 | 16 | a1i | |- ( G e. UPGraph -> ( ( E e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` E ) <_ 2 ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 18 | 11 17 | biimtrid | |- ( G e. UPGraph -> ( E e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 19 | 8 18 | syld | |- ( G e. UPGraph -> ( E e. ran ( iEdg ` G ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 20 | 3 19 | sylbid | |- ( G e. UPGraph -> ( E e. ( Edg ` G ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) ) |
| 21 | 20 | imp | |- ( ( G e. UPGraph /\ E e. ( Edg ` G ) ) -> ( E e. ~P ( Vtx ` G ) /\ E =/= (/) /\ ( # ` E ) <_ 2 ) ) |