This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | edginwlk.i | |- I = ( iEdg ` G ) |
|
| edginwlk.e | |- E = ( Edg ` G ) |
||
| Assertion | upgredginwlk | |- ( ( G e. UPGraph /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edginwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | edginwlk.e | |- E = ( Edg ` G ) |
|
| 3 | upgruhgr | |- ( G e. UPGraph -> G e. UHGraph ) |
|
| 4 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 5 | 3 4 | syl | |- ( G e. UPGraph -> Fun I ) |
| 6 | 1 2 | edginwlk | |- ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. E ) |
| 7 | 6 | 3expia | |- ( ( Fun I /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) |
| 8 | 5 7 | sylan | |- ( ( G e. UPGraph /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) |