This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edges of a walk in a pseudograph join exactly the two corresponding adjacent vertices in the walk. (Contributed by AV, 27-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | upgrwlkedg.i | |- I = ( iEdg ` G ) |
|
| Assertion | upgrwlkedg | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrwlkedg.i | |- I = ( iEdg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 2 1 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 4 | simp3 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
|
| 5 | 3 4 | biimtrdi | |- ( G e. UPGraph -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 6 | 5 | imp | |- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |