This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a proper pair (of vertices) is a subset of an edge in a pseudograph, the pair is the edge. (Contributed by AV, 30-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | |- V = ( Vtx ` G ) |
|
| upgredg.e | |- E = ( Edg ` G ) |
||
| Assertion | upgredgpr | |- ( ( ( G e. UPGraph /\ C e. E /\ { A , B } C_ C ) /\ ( A e. U /\ B e. W /\ A =/= B ) ) -> { A , B } = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | |- V = ( Vtx ` G ) |
|
| 2 | upgredg.e | |- E = ( Edg ` G ) |
|
| 3 | 1 2 | upgredg | |- ( ( G e. UPGraph /\ C e. E ) -> E. a e. V E. b e. V C = { a , b } ) |
| 4 | 3 | 3adant3 | |- ( ( G e. UPGraph /\ C e. E /\ { A , B } C_ C ) -> E. a e. V E. b e. V C = { a , b } ) |
| 5 | ssprsseq | |- ( ( A e. U /\ B e. W /\ A =/= B ) -> ( { A , B } C_ { a , b } <-> { A , B } = { a , b } ) ) |
|
| 6 | 5 | biimpd | |- ( ( A e. U /\ B e. W /\ A =/= B ) -> ( { A , B } C_ { a , b } -> { A , B } = { a , b } ) ) |
| 7 | sseq2 | |- ( C = { a , b } -> ( { A , B } C_ C <-> { A , B } C_ { a , b } ) ) |
|
| 8 | eqeq2 | |- ( C = { a , b } -> ( { A , B } = C <-> { A , B } = { a , b } ) ) |
|
| 9 | 7 8 | imbi12d | |- ( C = { a , b } -> ( ( { A , B } C_ C -> { A , B } = C ) <-> ( { A , B } C_ { a , b } -> { A , B } = { a , b } ) ) ) |
| 10 | 6 9 | imbitrrid | |- ( C = { a , b } -> ( ( A e. U /\ B e. W /\ A =/= B ) -> ( { A , B } C_ C -> { A , B } = C ) ) ) |
| 11 | 10 | com23 | |- ( C = { a , b } -> ( { A , B } C_ C -> ( ( A e. U /\ B e. W /\ A =/= B ) -> { A , B } = C ) ) ) |
| 12 | 11 | a1i | |- ( ( a e. V /\ b e. V ) -> ( C = { a , b } -> ( { A , B } C_ C -> ( ( A e. U /\ B e. W /\ A =/= B ) -> { A , B } = C ) ) ) ) |
| 13 | 12 | rexlimivv | |- ( E. a e. V E. b e. V C = { a , b } -> ( { A , B } C_ C -> ( ( A e. U /\ B e. W /\ A =/= B ) -> { A , B } = C ) ) ) |
| 14 | 13 | com12 | |- ( { A , B } C_ C -> ( E. a e. V E. b e. V C = { a , b } -> ( ( A e. U /\ B e. W /\ A =/= B ) -> { A , B } = C ) ) ) |
| 15 | 14 | 3ad2ant3 | |- ( ( G e. UPGraph /\ C e. E /\ { A , B } C_ C ) -> ( E. a e. V E. b e. V C = { a , b } -> ( ( A e. U /\ B e. W /\ A =/= B ) -> { A , B } = C ) ) ) |
| 16 | 4 15 | mpd | |- ( ( G e. UPGraph /\ C e. E /\ { A , B } C_ C ) -> ( ( A e. U /\ B e. W /\ A =/= B ) -> { A , B } = C ) ) |
| 17 | 16 | imp | |- ( ( ( G e. UPGraph /\ C e. E /\ { A , B } C_ C ) /\ ( A e. U /\ B e. W /\ A =/= B ) ) -> { A , B } = C ) |