This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifpprsnss | |- ( P = { A , B } -> if- ( A = B , P = { A } , { A , B } C_ P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 | |- ( B = A -> { A , B } = { A , A } ) |
|
| 2 | dfsn2 | |- { A } = { A , A } |
|
| 3 | 1 2 | eqtr4di | |- ( B = A -> { A , B } = { A } ) |
| 4 | 3 | eqcoms | |- ( A = B -> { A , B } = { A } ) |
| 5 | 4 | eqeq2d | |- ( A = B -> ( P = { A , B } <-> P = { A } ) ) |
| 6 | 5 | biimpac | |- ( ( P = { A , B } /\ A = B ) -> P = { A } ) |
| 7 | eqimss2 | |- ( P = { A , B } -> { A , B } C_ P ) |
|
| 8 | 7 | adantr | |- ( ( P = { A , B } /\ -. A = B ) -> { A , B } C_ P ) |
| 9 | 6 8 | ifpimpda | |- ( P = { A , B } -> if- ( A = B , P = { A } , { A , B } C_ P ) ) |