This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal pair <. X , M >. from object W to functor <. F , G >. is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upeu3.i | |- ( ph -> I = ( Iso ` D ) ) |
|
| upeu3.o | |- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) |
||
| upeu3.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
||
| upeu3.y | |- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) |
||
| Assertion | upeu3 | |- ( ph -> E! r e. ( X I Y ) N = ( ( ( X G Y ) ` r ) .o. M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upeu3.i | |- ( ph -> I = ( Iso ` D ) ) |
|
| 2 | upeu3.o | |- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) |
|
| 3 | upeu3.x | |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
|
| 4 | upeu3.y | |- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 9 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 10 | 3 | uprcl2 | |- ( ph -> F ( D Func E ) G ) |
| 11 | 3 5 | uprcl4 | |- ( ph -> X e. ( Base ` D ) ) |
| 12 | 4 5 | uprcl4 | |- ( ph -> Y e. ( Base ` D ) ) |
| 13 | 3 6 | uprcl3 | |- ( ph -> W e. ( Base ` E ) ) |
| 14 | 3 8 | uprcl5 | |- ( ph -> M e. ( W ( Hom ` E ) ( F ` X ) ) ) |
| 15 | 5 7 8 9 3 | isup2 | |- ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) |
| 16 | 4 8 | uprcl5 | |- ( ph -> N e. ( W ( Hom ` E ) ( F ` Y ) ) ) |
| 17 | 5 7 8 9 4 | isup2 | |- ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) |
| 18 | 5 6 7 8 9 10 11 12 13 14 15 16 17 | upeu | |- ( ph -> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 19 | 1 | oveqd | |- ( ph -> ( X I Y ) = ( X ( Iso ` D ) Y ) ) |
| 20 | 2 | oveqd | |- ( ph -> ( ( ( X G Y ) ` r ) .o. M ) = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 21 | 20 | eqeq2d | |- ( ph -> ( N = ( ( ( X G Y ) ` r ) .o. M ) <-> N = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) ) |
| 22 | 19 21 | reueqbidv | |- ( ph -> ( E! r e. ( X I Y ) N = ( ( ( X G Y ) ` r ) .o. M ) <-> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) ) |
| 23 | 18 22 | mpbird | |- ( ph -> E! r e. ( X I Y ) N = ( ( ( X G Y ) ` r ) .o. M ) ) |