This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal pair <. X , M >. from object W to functor <. F , G >. is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upeu3.i | ⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐷 ) ) | |
| upeu3.o | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) | ||
| upeu3.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) | ||
| upeu3.y | ⊢ ( 𝜑 → 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ) | ||
| Assertion | upeu3 | ⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 𝐼 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upeu3.i | ⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐷 ) ) | |
| 2 | upeu3.o | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) | |
| 3 | upeu3.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) | |
| 4 | upeu3.y | ⊢ ( 𝜑 → 𝑌 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑁 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 10 | 3 | uprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 11 | 3 5 | uprcl4 | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 12 | 4 5 | uprcl4 | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 13 | 3 6 | uprcl3 | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
| 14 | 3 8 | uprcl5 | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 15 | 5 7 8 9 3 | isup2 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) |
| 16 | 4 8 | uprcl5 | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 17 | 5 7 8 9 4 | isup2 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑌 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑁 ) ) |
| 18 | 5 6 7 8 9 10 11 12 13 14 15 16 17 | upeu | ⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 19 | 1 | oveqd | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) ) |
| 20 | 2 | oveqd | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) |
| 21 | 20 | eqeq2d | ⊢ ( 𝜑 → ( 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ↔ 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 22 | 19 21 | reueqbidv | ⊢ ( 𝜑 → ( ∃! 𝑟 ∈ ( 𝑋 𝐼 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ↔ ∃! 𝑟 ∈ ( 𝑋 ( Iso ‘ 𝐷 ) 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) 𝑀 ) ) ) |
| 23 | 18 22 | mpbird | ⊢ ( 𝜑 → ∃! 𝑟 ∈ ( 𝑋 𝐼 𝑌 ) 𝑁 = ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑟 ) ⚬ 𝑀 ) ) |