This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reu2eqd.1 | |- ( x = B -> ( ps <-> ch ) ) |
|
| reu2eqd.2 | |- ( x = C -> ( ps <-> th ) ) |
||
| reu2eqd.3 | |- ( ph -> E! x e. A ps ) |
||
| reu2eqd.4 | |- ( ph -> B e. A ) |
||
| reu2eqd.5 | |- ( ph -> C e. A ) |
||
| reu2eqd.6 | |- ( ph -> ch ) |
||
| reu2eqd.7 | |- ( ph -> th ) |
||
| Assertion | reu2eqd | |- ( ph -> B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu2eqd.1 | |- ( x = B -> ( ps <-> ch ) ) |
|
| 2 | reu2eqd.2 | |- ( x = C -> ( ps <-> th ) ) |
|
| 3 | reu2eqd.3 | |- ( ph -> E! x e. A ps ) |
|
| 4 | reu2eqd.4 | |- ( ph -> B e. A ) |
|
| 5 | reu2eqd.5 | |- ( ph -> C e. A ) |
|
| 6 | reu2eqd.6 | |- ( ph -> ch ) |
|
| 7 | reu2eqd.7 | |- ( ph -> th ) |
|
| 8 | reu2 | |- ( E! x e. A ps <-> ( E. x e. A ps /\ A. x e. A A. y e. A ( ( ps /\ [ y / x ] ps ) -> x = y ) ) ) |
|
| 9 | 3 8 | sylib | |- ( ph -> ( E. x e. A ps /\ A. x e. A A. y e. A ( ( ps /\ [ y / x ] ps ) -> x = y ) ) ) |
| 10 | 9 | simprd | |- ( ph -> A. x e. A A. y e. A ( ( ps /\ [ y / x ] ps ) -> x = y ) ) |
| 11 | nfv | |- F/ x ch |
|
| 12 | nfs1v | |- F/ x [ y / x ] ps |
|
| 13 | 11 12 | nfan | |- F/ x ( ch /\ [ y / x ] ps ) |
| 14 | nfv | |- F/ x B = y |
|
| 15 | 13 14 | nfim | |- F/ x ( ( ch /\ [ y / x ] ps ) -> B = y ) |
| 16 | nfv | |- F/ y ( ( ch /\ th ) -> B = C ) |
|
| 17 | 1 | anbi1d | |- ( x = B -> ( ( ps /\ [ y / x ] ps ) <-> ( ch /\ [ y / x ] ps ) ) ) |
| 18 | eqeq1 | |- ( x = B -> ( x = y <-> B = y ) ) |
|
| 19 | 17 18 | imbi12d | |- ( x = B -> ( ( ( ps /\ [ y / x ] ps ) -> x = y ) <-> ( ( ch /\ [ y / x ] ps ) -> B = y ) ) ) |
| 20 | nfv | |- F/ x th |
|
| 21 | 20 2 | sbhypf | |- ( y = C -> ( [ y / x ] ps <-> th ) ) |
| 22 | 21 | anbi2d | |- ( y = C -> ( ( ch /\ [ y / x ] ps ) <-> ( ch /\ th ) ) ) |
| 23 | eqeq2 | |- ( y = C -> ( B = y <-> B = C ) ) |
|
| 24 | 22 23 | imbi12d | |- ( y = C -> ( ( ( ch /\ [ y / x ] ps ) -> B = y ) <-> ( ( ch /\ th ) -> B = C ) ) ) |
| 25 | 15 16 19 24 | rspc2 | |- ( ( B e. A /\ C e. A ) -> ( A. x e. A A. y e. A ( ( ps /\ [ y / x ] ps ) -> x = y ) -> ( ( ch /\ th ) -> B = C ) ) ) |
| 26 | 4 5 25 | syl2anc | |- ( ph -> ( A. x e. A A. y e. A ( ( ps /\ [ y / x ] ps ) -> x = y ) -> ( ( ch /\ th ) -> B = C ) ) ) |
| 27 | 10 26 | mpd | |- ( ph -> ( ( ch /\ th ) -> B = C ) ) |
| 28 | 6 7 27 | mp2and | |- ( ph -> B = C ) |