This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | |- E = ( RLReg ` R ) |
|
| rrgval.b | |- B = ( Base ` R ) |
||
| rrgval.t | |- .x. = ( .r ` R ) |
||
| rrgval.z | |- .0. = ( 0g ` R ) |
||
| Assertion | isrrg | |- ( X e. E <-> ( X e. B /\ A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | |- E = ( RLReg ` R ) |
|
| 2 | rrgval.b | |- B = ( Base ` R ) |
|
| 3 | rrgval.t | |- .x. = ( .r ` R ) |
|
| 4 | rrgval.z | |- .0. = ( 0g ` R ) |
|
| 5 | oveq1 | |- ( x = X -> ( x .x. y ) = ( X .x. y ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = X -> ( ( x .x. y ) = .0. <-> ( X .x. y ) = .0. ) ) |
| 7 | 6 | imbi1d | |- ( x = X -> ( ( ( x .x. y ) = .0. -> y = .0. ) <-> ( ( X .x. y ) = .0. -> y = .0. ) ) ) |
| 8 | 7 | ralbidv | |- ( x = X -> ( A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) <-> A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) ) |
| 9 | 1 2 3 4 | rrgval | |- E = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } |
| 10 | 8 9 | elrab2 | |- ( X e. E <-> ( X e. B /\ A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) ) |