This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | rngidpropd | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 4 | eqid | |- ( mulGrp ` K ) = ( mulGrp ` K ) |
|
| 5 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 6 | 4 5 | mgpbas | |- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 7 | 1 6 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` K ) ) ) |
| 8 | eqid | |- ( mulGrp ` L ) = ( mulGrp ` L ) |
|
| 9 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 10 | 8 9 | mgpbas | |- ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) |
| 11 | 2 10 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) |
| 12 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 13 | 4 12 | mgpplusg | |- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 14 | 13 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( +g ` ( mulGrp ` K ) ) y ) |
| 15 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 16 | 8 15 | mgpplusg | |- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 17 | 16 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) |
| 18 | 3 14 17 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) |
| 19 | 7 11 18 | grpidpropd | |- ( ph -> ( 0g ` ( mulGrp ` K ) ) = ( 0g ` ( mulGrp ` L ) ) ) |
| 20 | eqid | |- ( 1r ` K ) = ( 1r ` K ) |
|
| 21 | 4 20 | ringidval | |- ( 1r ` K ) = ( 0g ` ( mulGrp ` K ) ) |
| 22 | eqid | |- ( 1r ` L ) = ( 1r ` L ) |
|
| 23 | 8 22 | ringidval | |- ( 1r ` L ) = ( 0g ` ( mulGrp ` L ) ) |
| 24 | 19 21 23 | 3eqtr4g | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |