This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| uniioombl.a | |- A = U. ran ( (,) o. F ) |
||
| uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
||
| uniioombl.c | |- ( ph -> C e. RR+ ) |
||
| uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
||
| uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
||
| Assertion | uniioombllem2a | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) e. ran (,) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | uniioombl.a | |- A = U. ran ( (,) o. F ) |
|
| 5 | uniioombl.e | |- ( ph -> ( vol* ` E ) e. RR ) |
|
| 6 | uniioombl.c | |- ( ph -> C e. RR+ ) |
|
| 7 | uniioombl.g | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 8 | uniioombl.s | |- ( ph -> E C_ U. ran ( (,) o. G ) ) |
|
| 9 | uniioombl.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 10 | uniioombl.v | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
|
| 11 | 1 | adantr | |- ( ( ph /\ J e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 12 | 11 | ffvelcdmda | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( F ` z ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 13 | 12 | elin2d | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( F ` z ) e. ( RR X. RR ) ) |
| 14 | 1st2nd2 | |- ( ( F ` z ) e. ( RR X. RR ) -> ( F ` z ) = <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) |
|
| 15 | 13 14 | syl | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( F ` z ) = <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) |
| 16 | 15 | fveq2d | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( (,) ` ( F ` z ) ) = ( (,) ` <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) ) |
| 17 | df-ov | |- ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) = ( (,) ` <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) |
|
| 18 | 16 17 | eqtr4di | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( (,) ` ( F ` z ) ) = ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) ) |
| 19 | 7 | ffvelcdmda | |- ( ( ph /\ J e. NN ) -> ( G ` J ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 20 | 19 | elin2d | |- ( ( ph /\ J e. NN ) -> ( G ` J ) e. ( RR X. RR ) ) |
| 21 | 1st2nd2 | |- ( ( G ` J ) e. ( RR X. RR ) -> ( G ` J ) = <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ J e. NN ) -> ( G ` J ) = <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) |
| 23 | 22 | fveq2d | |- ( ( ph /\ J e. NN ) -> ( (,) ` ( G ` J ) ) = ( (,) ` <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) ) |
| 24 | df-ov | |- ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) = ( (,) ` <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) |
|
| 25 | 23 24 | eqtr4di | |- ( ( ph /\ J e. NN ) -> ( (,) ` ( G ` J ) ) = ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) |
| 26 | 25 | adantr | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( (,) ` ( G ` J ) ) = ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) |
| 27 | 18 26 | ineq12d | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) = ( ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) i^i ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) ) |
| 28 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ z e. NN ) -> ( ( 1st ` ( F ` z ) ) e. RR /\ ( 2nd ` ( F ` z ) ) e. RR /\ ( 1st ` ( F ` z ) ) <_ ( 2nd ` ( F ` z ) ) ) ) |
|
| 29 | 11 28 | sylan | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( 1st ` ( F ` z ) ) e. RR /\ ( 2nd ` ( F ` z ) ) e. RR /\ ( 1st ` ( F ` z ) ) <_ ( 2nd ` ( F ` z ) ) ) ) |
| 30 | 29 | simp1d | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 1st ` ( F ` z ) ) e. RR ) |
| 31 | 30 | rexrd | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 1st ` ( F ` z ) ) e. RR* ) |
| 32 | 29 | simp2d | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 2nd ` ( F ` z ) ) e. RR ) |
| 33 | 32 | rexrd | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 2nd ` ( F ` z ) ) e. RR* ) |
| 34 | ovolfcl | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ J e. NN ) -> ( ( 1st ` ( G ` J ) ) e. RR /\ ( 2nd ` ( G ` J ) ) e. RR /\ ( 1st ` ( G ` J ) ) <_ ( 2nd ` ( G ` J ) ) ) ) |
|
| 35 | 7 34 | sylan | |- ( ( ph /\ J e. NN ) -> ( ( 1st ` ( G ` J ) ) e. RR /\ ( 2nd ` ( G ` J ) ) e. RR /\ ( 1st ` ( G ` J ) ) <_ ( 2nd ` ( G ` J ) ) ) ) |
| 36 | 35 | simp1d | |- ( ( ph /\ J e. NN ) -> ( 1st ` ( G ` J ) ) e. RR ) |
| 37 | 36 | rexrd | |- ( ( ph /\ J e. NN ) -> ( 1st ` ( G ` J ) ) e. RR* ) |
| 38 | 37 | adantr | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 1st ` ( G ` J ) ) e. RR* ) |
| 39 | 35 | simp2d | |- ( ( ph /\ J e. NN ) -> ( 2nd ` ( G ` J ) ) e. RR ) |
| 40 | 39 | rexrd | |- ( ( ph /\ J e. NN ) -> ( 2nd ` ( G ` J ) ) e. RR* ) |
| 41 | 40 | adantr | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 2nd ` ( G ` J ) ) e. RR* ) |
| 42 | iooin | |- ( ( ( ( 1st ` ( F ` z ) ) e. RR* /\ ( 2nd ` ( F ` z ) ) e. RR* ) /\ ( ( 1st ` ( G ` J ) ) e. RR* /\ ( 2nd ` ( G ` J ) ) e. RR* ) ) -> ( ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) i^i ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) = ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) ) |
|
| 43 | 31 33 38 41 42 | syl22anc | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) i^i ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) = ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) ) |
| 44 | 27 43 | eqtrd | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) = ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) ) |
| 45 | ioorebas | |- ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) e. ran (,) |
|
| 46 | 44 45 | eqeltrdi | |- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) e. ran (,) ) |