This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv resp. umgrnloop . (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgredgne.v | |- E = ( Edg ` G ) |
|
| Assertion | umgredgne | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> M =/= N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgredgne.v | |- E = ( Edg ` G ) |
|
| 2 | 1 | eleq2i | |- ( { M , N } e. E <-> { M , N } e. ( Edg ` G ) ) |
| 3 | edgumgr | |- ( ( G e. UMGraph /\ { M , N } e. ( Edg ` G ) ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) ) |
|
| 4 | 2 3 | sylan2b | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) ) |
| 5 | eqid | |- { M , N } = { M , N } |
|
| 6 | 5 | hashprdifel | |- ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) ) |
| 7 | 6 | simp3d | |- ( ( # ` { M , N } ) = 2 -> M =/= N ) |
| 8 | 4 7 | simpl2im | |- ( ( G e. UMGraph /\ { M , N } e. E ) -> M =/= N ) |