This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk of length 1 is a loop. See also clwlkl1loop . (Contributed by AV, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlk1loop | |- ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = 1 ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 1 2 | isclwwlk | |- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 4 | lsw1 | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( lastS ` W ) = ( W ` 0 ) ) |
|
| 5 | 4 | preq1d | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> { ( lastS ` W ) , ( W ` 0 ) } = { ( W ` 0 ) , ( W ` 0 ) } ) |
| 6 | 5 | eleq1d | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 7 | 6 | biimpd | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = 1 ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 8 | 7 | ex | |- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = 1 -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 9 | 8 | com23 | |- ( W e. Word ( Vtx ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 10 | 9 | adantr | |- ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 11 | 10 | imp | |- ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 12 | 11 | 3adant2 | |- ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 13 | 3 12 | sylbi | |- ( W e. ( ClWWalks ` G ) -> ( ( # ` W ) = 1 -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 14 | 13 | imp | |- ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = 1 ) -> { ( W ` 0 ) , ( W ` 0 ) } e. ( Edg ` G ) ) |