This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0n0n1ge2 | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 2 | 1cnd | |- ( N e. NN0 -> 1 e. CC ) |
|
| 3 | 1 2 2 | subsub4d | |- ( N e. NN0 -> ( ( N - 1 ) - 1 ) = ( N - ( 1 + 1 ) ) ) |
| 4 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 5 | 4 | oveq2i | |- ( N - ( 1 + 1 ) ) = ( N - 2 ) |
| 6 | 3 5 | eqtr2di | |- ( N e. NN0 -> ( N - 2 ) = ( ( N - 1 ) - 1 ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( N - 2 ) = ( ( N - 1 ) - 1 ) ) |
| 8 | 3simpa | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( N e. NN0 /\ N =/= 0 ) ) |
|
| 9 | elnnne0 | |- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
|
| 10 | 8 9 | sylibr | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> N e. NN ) |
| 11 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 12 | 10 11 | syl | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( N - 1 ) e. NN0 ) |
| 13 | 1 2 | subeq0ad | |- ( N e. NN0 -> ( ( N - 1 ) = 0 <-> N = 1 ) ) |
| 14 | 13 | biimpd | |- ( N e. NN0 -> ( ( N - 1 ) = 0 -> N = 1 ) ) |
| 15 | 14 | necon3d | |- ( N e. NN0 -> ( N =/= 1 -> ( N - 1 ) =/= 0 ) ) |
| 16 | 15 | imp | |- ( ( N e. NN0 /\ N =/= 1 ) -> ( N - 1 ) =/= 0 ) |
| 17 | 16 | 3adant2 | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( N - 1 ) =/= 0 ) |
| 18 | elnnne0 | |- ( ( N - 1 ) e. NN <-> ( ( N - 1 ) e. NN0 /\ ( N - 1 ) =/= 0 ) ) |
|
| 19 | 12 17 18 | sylanbrc | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( N - 1 ) e. NN ) |
| 20 | nnm1nn0 | |- ( ( N - 1 ) e. NN -> ( ( N - 1 ) - 1 ) e. NN0 ) |
|
| 21 | 19 20 | syl | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( ( N - 1 ) - 1 ) e. NN0 ) |
| 22 | 7 21 | eqeltrd | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( N - 2 ) e. NN0 ) |
| 23 | 2nn0 | |- 2 e. NN0 |
|
| 24 | 23 | jctl | |- ( N e. NN0 -> ( 2 e. NN0 /\ N e. NN0 ) ) |
| 25 | 24 | 3ad2ant1 | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( 2 e. NN0 /\ N e. NN0 ) ) |
| 26 | nn0sub | |- ( ( 2 e. NN0 /\ N e. NN0 ) -> ( 2 <_ N <-> ( N - 2 ) e. NN0 ) ) |
|
| 27 | 25 26 | syl | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> ( 2 <_ N <-> ( N - 2 ) e. NN0 ) ) |
| 28 | 22 27 | mpbird | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) |