This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulm2.z | |- Z = ( ZZ>= ` M ) |
|
| ulm2.m | |- ( ph -> M e. ZZ ) |
||
| ulm2.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| ulm2.b | |- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = B ) |
||
| ulm2.a | |- ( ( ph /\ z e. S ) -> ( G ` z ) = A ) |
||
| ulmi.u | |- ( ph -> F ( ~~>u ` S ) G ) |
||
| ulmi.c | |- ( ph -> C e. RR+ ) |
||
| Assertion | ulmi | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm2.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulm2.m | |- ( ph -> M e. ZZ ) |
|
| 3 | ulm2.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 4 | ulm2.b | |- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = B ) |
|
| 5 | ulm2.a | |- ( ( ph /\ z e. S ) -> ( G ` z ) = A ) |
|
| 6 | ulmi.u | |- ( ph -> F ( ~~>u ` S ) G ) |
|
| 7 | ulmi.c | |- ( ph -> C e. RR+ ) |
|
| 8 | breq2 | |- ( x = C -> ( ( abs ` ( B - A ) ) < x <-> ( abs ` ( B - A ) ) < C ) ) |
|
| 9 | 8 | ralbidv | |- ( x = C -> ( A. z e. S ( abs ` ( B - A ) ) < x <-> A. z e. S ( abs ` ( B - A ) ) < C ) ) |
| 10 | 9 | rexralbidv | |- ( x = C -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < C ) ) |
| 11 | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 12 | 6 11 | syl | |- ( ph -> G : S --> CC ) |
| 13 | ulmscl | |- ( F ( ~~>u ` S ) G -> S e. _V ) |
|
| 14 | 6 13 | syl | |- ( ph -> S e. _V ) |
| 15 | 1 2 3 4 5 12 14 | ulm2 | |- ( ph -> ( F ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < x ) ) |
| 16 | 6 15 | mpbid | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < x ) |
| 17 | 10 16 7 | rspcdva | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < C ) |