This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclsss2 | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) -> ( J fClus G ) C_ ( J fClus F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> F C_ G ) |
|
| 2 | ssralv | |- ( F C_ G -> ( A. s e. G x e. ( ( cls ` J ) ` s ) -> A. s e. F x e. ( ( cls ` J ) ` s ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> ( A. s e. G x e. ( ( cls ` J ) ` s ) -> A. s e. F x e. ( ( cls ` J ) ` s ) ) ) |
| 4 | simpl1 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> J e. ( TopOn ` X ) ) |
|
| 5 | fclstopon | |- ( x e. ( J fClus G ) -> ( J e. ( TopOn ` X ) <-> G e. ( Fil ` X ) ) ) |
|
| 6 | 5 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> ( J e. ( TopOn ` X ) <-> G e. ( Fil ` X ) ) ) |
| 7 | 4 6 | mpbid | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> G e. ( Fil ` X ) ) |
| 8 | isfcls2 | |- ( ( J e. ( TopOn ` X ) /\ G e. ( Fil ` X ) ) -> ( x e. ( J fClus G ) <-> A. s e. G x e. ( ( cls ` J ) ` s ) ) ) |
|
| 9 | 4 7 8 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> ( x e. ( J fClus G ) <-> A. s e. G x e. ( ( cls ` J ) ` s ) ) ) |
| 10 | simpl2 | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> F e. ( Fil ` X ) ) |
|
| 11 | isfcls2 | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) ) -> ( x e. ( J fClus F ) <-> A. s e. F x e. ( ( cls ` J ) ` s ) ) ) |
|
| 12 | 4 10 11 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> ( x e. ( J fClus F ) <-> A. s e. F x e. ( ( cls ` J ) ` s ) ) ) |
| 13 | 3 9 12 | 3imtr4d | |- ( ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) /\ x e. ( J fClus G ) ) -> ( x e. ( J fClus G ) -> x e. ( J fClus F ) ) ) |
| 14 | 13 | ex | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) -> ( x e. ( J fClus G ) -> ( x e. ( J fClus G ) -> x e. ( J fClus F ) ) ) ) |
| 15 | 14 | pm2.43d | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) -> ( x e. ( J fClus G ) -> x e. ( J fClus F ) ) ) |
| 16 | 15 | ssrdv | |- ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) /\ F C_ G ) -> ( J fClus G ) C_ ( J fClus F ) ) |