This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufli | |- ( ( X e. UFL /\ F e. ( Fil ` X ) ) -> E. f e. ( UFil ` X ) F C_ f ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isufl | |- ( X e. UFL -> ( X e. UFL <-> A. g e. ( Fil ` X ) E. f e. ( UFil ` X ) g C_ f ) ) |
|
| 2 | 1 | ibi | |- ( X e. UFL -> A. g e. ( Fil ` X ) E. f e. ( UFil ` X ) g C_ f ) |
| 3 | sseq1 | |- ( g = F -> ( g C_ f <-> F C_ f ) ) |
|
| 4 | 3 | rexbidv | |- ( g = F -> ( E. f e. ( UFil ` X ) g C_ f <-> E. f e. ( UFil ` X ) F C_ f ) ) |
| 5 | 4 | rspccva | |- ( ( A. g e. ( Fil ` X ) E. f e. ( UFil ` X ) g C_ f /\ F e. ( Fil ` X ) ) -> E. f e. ( UFil ` X ) F C_ f ) |
| 6 | 2 5 | sylan | |- ( ( X e. UFL /\ F e. ( Fil ` X ) ) -> E. f e. ( UFil ` X ) F C_ f ) |