This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclscmp | |- ( J e. ( TopOn ` X ) -> ( J e. Comp <-> A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | fclscmpi | |- ( ( J e. Comp /\ f e. ( Fil ` U. J ) ) -> ( J fClus f ) =/= (/) ) |
| 3 | 2 | ralrimiva | |- ( J e. Comp -> A. f e. ( Fil ` U. J ) ( J fClus f ) =/= (/) ) |
| 4 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 5 | 4 | fveq2d | |- ( J e. ( TopOn ` X ) -> ( Fil ` X ) = ( Fil ` U. J ) ) |
| 6 | 5 | raleqdv | |- ( J e. ( TopOn ` X ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) <-> A. f e. ( Fil ` U. J ) ( J fClus f ) =/= (/) ) ) |
| 7 | 3 6 | imbitrrid | |- ( J e. ( TopOn ` X ) -> ( J e. Comp -> A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) ) ) |
| 8 | elpwi | |- ( x e. ~P ( Clsd ` J ) -> x C_ ( Clsd ` J ) ) |
|
| 9 | vn0 | |- _V =/= (/) |
|
| 10 | simpr | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x = (/) ) -> x = (/) ) |
|
| 11 | 10 | inteqd | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x = (/) ) -> |^| x = |^| (/) ) |
| 12 | int0 | |- |^| (/) = _V |
|
| 13 | 11 12 | eqtrdi | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x = (/) ) -> |^| x = _V ) |
| 14 | 13 | neeq1d | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x = (/) ) -> ( |^| x =/= (/) <-> _V =/= (/) ) ) |
| 15 | 9 14 | mpbiri | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x = (/) ) -> |^| x =/= (/) ) |
| 16 | 15 | a1d | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x = (/) ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> |^| x =/= (/) ) ) |
| 17 | ssfii | |- ( x e. _V -> x C_ ( fi ` x ) ) |
|
| 18 | 17 | elv | |- x C_ ( fi ` x ) |
| 19 | simplrl | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> x C_ ( Clsd ` J ) ) |
|
| 20 | 1 | cldss2 | |- ( Clsd ` J ) C_ ~P U. J |
| 21 | 4 | ad2antrr | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> X = U. J ) |
| 22 | 21 | pweqd | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ~P X = ~P U. J ) |
| 23 | 20 22 | sseqtrrid | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( Clsd ` J ) C_ ~P X ) |
| 24 | 19 23 | sstrd | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> x C_ ~P X ) |
| 25 | simpr | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> x =/= (/) ) |
|
| 26 | simplrr | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> -. (/) e. ( fi ` x ) ) |
|
| 27 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 28 | 27 | ad2antrr | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> X e. J ) |
| 29 | fsubbas | |- ( X e. J -> ( ( fi ` x ) e. ( fBas ` X ) <-> ( x C_ ~P X /\ x =/= (/) /\ -. (/) e. ( fi ` x ) ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( ( fi ` x ) e. ( fBas ` X ) <-> ( x C_ ~P X /\ x =/= (/) /\ -. (/) e. ( fi ` x ) ) ) ) |
| 31 | 24 25 26 30 | mpbir3and | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( fi ` x ) e. ( fBas ` X ) ) |
| 32 | ssfg | |- ( ( fi ` x ) e. ( fBas ` X ) -> ( fi ` x ) C_ ( X filGen ( fi ` x ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( fi ` x ) C_ ( X filGen ( fi ` x ) ) ) |
| 34 | 18 33 | sstrid | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> x C_ ( X filGen ( fi ` x ) ) ) |
| 35 | 34 | sselda | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) /\ y e. x ) -> y e. ( X filGen ( fi ` x ) ) ) |
| 36 | fclssscls | |- ( y e. ( X filGen ( fi ` x ) ) -> ( J fClus ( X filGen ( fi ` x ) ) ) C_ ( ( cls ` J ) ` y ) ) |
|
| 37 | 35 36 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) /\ y e. x ) -> ( J fClus ( X filGen ( fi ` x ) ) ) C_ ( ( cls ` J ) ` y ) ) |
| 38 | 19 | sselda | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) /\ y e. x ) -> y e. ( Clsd ` J ) ) |
| 39 | cldcls | |- ( y e. ( Clsd ` J ) -> ( ( cls ` J ) ` y ) = y ) |
|
| 40 | 38 39 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) /\ y e. x ) -> ( ( cls ` J ) ` y ) = y ) |
| 41 | 37 40 | sseqtrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) /\ y e. x ) -> ( J fClus ( X filGen ( fi ` x ) ) ) C_ y ) |
| 42 | 41 | ralrimiva | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> A. y e. x ( J fClus ( X filGen ( fi ` x ) ) ) C_ y ) |
| 43 | ssint | |- ( ( J fClus ( X filGen ( fi ` x ) ) ) C_ |^| x <-> A. y e. x ( J fClus ( X filGen ( fi ` x ) ) ) C_ y ) |
|
| 44 | 42 43 | sylibr | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( J fClus ( X filGen ( fi ` x ) ) ) C_ |^| x ) |
| 45 | fgcl | |- ( ( fi ` x ) e. ( fBas ` X ) -> ( X filGen ( fi ` x ) ) e. ( Fil ` X ) ) |
|
| 46 | oveq2 | |- ( f = ( X filGen ( fi ` x ) ) -> ( J fClus f ) = ( J fClus ( X filGen ( fi ` x ) ) ) ) |
|
| 47 | 46 | neeq1d | |- ( f = ( X filGen ( fi ` x ) ) -> ( ( J fClus f ) =/= (/) <-> ( J fClus ( X filGen ( fi ` x ) ) ) =/= (/) ) ) |
| 48 | 47 | rspcv | |- ( ( X filGen ( fi ` x ) ) e. ( Fil ` X ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> ( J fClus ( X filGen ( fi ` x ) ) ) =/= (/) ) ) |
| 49 | 31 45 48 | 3syl | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> ( J fClus ( X filGen ( fi ` x ) ) ) =/= (/) ) ) |
| 50 | ssn0 | |- ( ( ( J fClus ( X filGen ( fi ` x ) ) ) C_ |^| x /\ ( J fClus ( X filGen ( fi ` x ) ) ) =/= (/) ) -> |^| x =/= (/) ) |
|
| 51 | 44 49 50 | syl6an | |- ( ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) /\ x =/= (/) ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> |^| x =/= (/) ) ) |
| 52 | 16 51 | pm2.61dane | |- ( ( J e. ( TopOn ` X ) /\ ( x C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` x ) ) ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> |^| x =/= (/) ) ) |
| 53 | 52 | expr | |- ( ( J e. ( TopOn ` X ) /\ x C_ ( Clsd ` J ) ) -> ( -. (/) e. ( fi ` x ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> |^| x =/= (/) ) ) ) |
| 54 | 8 53 | sylan2 | |- ( ( J e. ( TopOn ` X ) /\ x e. ~P ( Clsd ` J ) ) -> ( -. (/) e. ( fi ` x ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> |^| x =/= (/) ) ) ) |
| 55 | 54 | com23 | |- ( ( J e. ( TopOn ` X ) /\ x e. ~P ( Clsd ` J ) ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
| 56 | 55 | ralrimdva | |- ( J e. ( TopOn ` X ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
| 57 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 58 | cmpfi | |- ( J e. Top -> ( J e. Comp <-> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
|
| 59 | 57 58 | syl | |- ( J e. ( TopOn ` X ) -> ( J e. Comp <-> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
| 60 | 56 59 | sylibrd | |- ( J e. ( TopOn ` X ) -> ( A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) -> J e. Comp ) ) |
| 61 | 7 60 | impbid | |- ( J e. ( TopOn ` X ) -> ( J e. Comp <-> A. f e. ( Fil ` X ) ( J fClus f ) =/= (/) ) ) |