This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffix2 | |- ( F e. ( UFil ` X ) -> ( |^| F =/= (/) <-> E. x e. X F = { y e. ~P X | x e. y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | |- ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) |
|
| 2 | filn0 | |- ( F e. ( Fil ` X ) -> F =/= (/) ) |
|
| 3 | intssuni | |- ( F =/= (/) -> |^| F C_ U. F ) |
|
| 4 | 1 2 3 | 3syl | |- ( F e. ( UFil ` X ) -> |^| F C_ U. F ) |
| 5 | filunibas | |- ( F e. ( Fil ` X ) -> U. F = X ) |
|
| 6 | 1 5 | syl | |- ( F e. ( UFil ` X ) -> U. F = X ) |
| 7 | 4 6 | sseqtrd | |- ( F e. ( UFil ` X ) -> |^| F C_ X ) |
| 8 | 7 | sseld | |- ( F e. ( UFil ` X ) -> ( x e. |^| F -> x e. X ) ) |
| 9 | 8 | pm4.71rd | |- ( F e. ( UFil ` X ) -> ( x e. |^| F <-> ( x e. X /\ x e. |^| F ) ) ) |
| 10 | uffixfr | |- ( F e. ( UFil ` X ) -> ( x e. |^| F <-> F = { y e. ~P X | x e. y } ) ) |
|
| 11 | 10 | anbi2d | |- ( F e. ( UFil ` X ) -> ( ( x e. X /\ x e. |^| F ) <-> ( x e. X /\ F = { y e. ~P X | x e. y } ) ) ) |
| 12 | 9 11 | bitrd | |- ( F e. ( UFil ` X ) -> ( x e. |^| F <-> ( x e. X /\ F = { y e. ~P X | x e. y } ) ) ) |
| 13 | 12 | exbidv | |- ( F e. ( UFil ` X ) -> ( E. x x e. |^| F <-> E. x ( x e. X /\ F = { y e. ~P X | x e. y } ) ) ) |
| 14 | n0 | |- ( |^| F =/= (/) <-> E. x x e. |^| F ) |
|
| 15 | df-rex | |- ( E. x e. X F = { y e. ~P X | x e. y } <-> E. x ( x e. X /\ F = { y e. ~P X | x e. y } ) ) |
|
| 16 | 13 14 15 | 3bitr4g | |- ( F e. ( UFil ` X ) -> ( |^| F =/= (/) <-> E. x e. X F = { y e. ~P X | x e. y } ) ) |