This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilmax | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> F C_ G ) |
|
| 2 | filelss | |- ( ( G e. ( Fil ` X ) /\ x e. G ) -> x C_ X ) |
|
| 3 | 2 | ex | |- ( G e. ( Fil ` X ) -> ( x e. G -> x C_ X ) ) |
| 4 | 3 | 3ad2ant2 | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> ( x e. G -> x C_ X ) ) |
| 5 | ufilb | |- ( ( F e. ( UFil ` X ) /\ x C_ X ) -> ( -. x e. F <-> ( X \ x ) e. F ) ) |
|
| 6 | 5 | 3ad2antl1 | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> ( -. x e. F <-> ( X \ x ) e. F ) ) |
| 7 | simpl3 | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> F C_ G ) |
|
| 8 | 7 | sseld | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> ( ( X \ x ) e. F -> ( X \ x ) e. G ) ) |
| 9 | filfbas | |- ( G e. ( Fil ` X ) -> G e. ( fBas ` X ) ) |
|
| 10 | fbncp | |- ( ( G e. ( fBas ` X ) /\ x e. G ) -> -. ( X \ x ) e. G ) |
|
| 11 | 10 | ex | |- ( G e. ( fBas ` X ) -> ( x e. G -> -. ( X \ x ) e. G ) ) |
| 12 | 9 11 | syl | |- ( G e. ( Fil ` X ) -> ( x e. G -> -. ( X \ x ) e. G ) ) |
| 13 | 12 | con2d | |- ( G e. ( Fil ` X ) -> ( ( X \ x ) e. G -> -. x e. G ) ) |
| 14 | 13 | 3ad2ant2 | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> ( ( X \ x ) e. G -> -. x e. G ) ) |
| 15 | 14 | adantr | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> ( ( X \ x ) e. G -> -. x e. G ) ) |
| 16 | 8 15 | syld | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> ( ( X \ x ) e. F -> -. x e. G ) ) |
| 17 | 6 16 | sylbid | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> ( -. x e. F -> -. x e. G ) ) |
| 18 | 17 | con4d | |- ( ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) /\ x C_ X ) -> ( x e. G -> x e. F ) ) |
| 19 | 18 | ex | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> ( x C_ X -> ( x e. G -> x e. F ) ) ) |
| 20 | 19 | com23 | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> ( x e. G -> ( x C_ X -> x e. F ) ) ) |
| 21 | 4 20 | mpdd | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> ( x e. G -> x e. F ) ) |
| 22 | 21 | ssrdv | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> G C_ F ) |
| 23 | 1 22 | eqssd | |- ( ( F e. ( UFil ` X ) /\ G e. ( Fil ` X ) /\ F C_ G ) -> F = G ) |