This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension by continuity. Theorem 2 of BourbakiTop1 p. II.20. Given an uniform space on a set X , a subset A dense in X , and a function F uniformly continuous from A to Y , that function can be extended by continuity to the whole X , and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucnextcn.x | |- X = ( Base ` V ) |
|
| ucnextcn.y | |- Y = ( Base ` W ) |
||
| ucnextcn.j | |- J = ( TopOpen ` V ) |
||
| ucnextcn.k | |- K = ( TopOpen ` W ) |
||
| ucnextcn.s | |- S = ( UnifSt ` V ) |
||
| ucnextcn.t | |- T = ( UnifSt ` ( V |`s A ) ) |
||
| ucnextcn.u | |- U = ( UnifSt ` W ) |
||
| ucnextcn.v | |- ( ph -> V e. TopSp ) |
||
| ucnextcn.r | |- ( ph -> V e. UnifSp ) |
||
| ucnextcn.w | |- ( ph -> W e. TopSp ) |
||
| ucnextcn.z | |- ( ph -> W e. CUnifSp ) |
||
| ucnextcn.h | |- ( ph -> K e. Haus ) |
||
| ucnextcn.a | |- ( ph -> A C_ X ) |
||
| ucnextcn.f | |- ( ph -> F e. ( T uCn U ) ) |
||
| ucnextcn.c | |- ( ph -> ( ( cls ` J ) ` A ) = X ) |
||
| Assertion | ucnextcn | |- ( ph -> ( ( J CnExt K ) ` F ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnextcn.x | |- X = ( Base ` V ) |
|
| 2 | ucnextcn.y | |- Y = ( Base ` W ) |
|
| 3 | ucnextcn.j | |- J = ( TopOpen ` V ) |
|
| 4 | ucnextcn.k | |- K = ( TopOpen ` W ) |
|
| 5 | ucnextcn.s | |- S = ( UnifSt ` V ) |
|
| 6 | ucnextcn.t | |- T = ( UnifSt ` ( V |`s A ) ) |
|
| 7 | ucnextcn.u | |- U = ( UnifSt ` W ) |
|
| 8 | ucnextcn.v | |- ( ph -> V e. TopSp ) |
|
| 9 | ucnextcn.r | |- ( ph -> V e. UnifSp ) |
|
| 10 | ucnextcn.w | |- ( ph -> W e. TopSp ) |
|
| 11 | ucnextcn.z | |- ( ph -> W e. CUnifSp ) |
|
| 12 | ucnextcn.h | |- ( ph -> K e. Haus ) |
|
| 13 | ucnextcn.a | |- ( ph -> A C_ X ) |
|
| 14 | ucnextcn.f | |- ( ph -> F e. ( T uCn U ) ) |
|
| 15 | ucnextcn.c | |- ( ph -> ( ( cls ` J ) ` A ) = X ) |
|
| 16 | 1 6 | ressust | |- ( ( V e. UnifSp /\ A C_ X ) -> T e. ( UnifOn ` A ) ) |
| 17 | 9 13 16 | syl2anc | |- ( ph -> T e. ( UnifOn ` A ) ) |
| 18 | cuspusp | |- ( W e. CUnifSp -> W e. UnifSp ) |
|
| 19 | 11 18 | syl | |- ( ph -> W e. UnifSp ) |
| 20 | 2 7 4 | isusp | |- ( W e. UnifSp <-> ( U e. ( UnifOn ` Y ) /\ K = ( unifTop ` U ) ) ) |
| 21 | 19 20 | sylib | |- ( ph -> ( U e. ( UnifOn ` Y ) /\ K = ( unifTop ` U ) ) ) |
| 22 | 21 | simpld | |- ( ph -> U e. ( UnifOn ` Y ) ) |
| 23 | isucn | |- ( ( T e. ( UnifOn ` A ) /\ U e. ( UnifOn ` Y ) ) -> ( F e. ( T uCn U ) <-> ( F : A --> Y /\ A. w e. U E. v e. T A. y e. A A. z e. A ( y v z -> ( F ` y ) w ( F ` z ) ) ) ) ) |
|
| 24 | 17 22 23 | syl2anc | |- ( ph -> ( F e. ( T uCn U ) <-> ( F : A --> Y /\ A. w e. U E. v e. T A. y e. A A. z e. A ( y v z -> ( F ` y ) w ( F ` z ) ) ) ) ) |
| 25 | 14 24 | mpbid | |- ( ph -> ( F : A --> Y /\ A. w e. U E. v e. T A. y e. A A. z e. A ( y v z -> ( F ` y ) w ( F ` z ) ) ) ) |
| 26 | 25 | simpld | |- ( ph -> F : A --> Y ) |
| 27 | 22 | adantr | |- ( ( ph /\ x e. X ) -> U e. ( UnifOn ` Y ) ) |
| 28 | 27 | elfvexd | |- ( ( ph /\ x e. X ) -> Y e. _V ) |
| 29 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 30 | 15 | adantr | |- ( ( ph /\ x e. X ) -> ( ( cls ` J ) ` A ) = X ) |
| 31 | 29 30 | eleqtrrd | |- ( ( ph /\ x e. X ) -> x e. ( ( cls ` J ) ` A ) ) |
| 32 | 1 3 | istps | |- ( V e. TopSp <-> J e. ( TopOn ` X ) ) |
| 33 | 8 32 | sylib | |- ( ph -> J e. ( TopOn ` X ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ x e. X ) -> J e. ( TopOn ` X ) ) |
| 35 | 13 | adantr | |- ( ( ph /\ x e. X ) -> A C_ X ) |
| 36 | trnei | |- ( ( J e. ( TopOn ` X ) /\ A C_ X /\ x e. X ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
|
| 37 | 34 35 29 36 | syl3anc | |- ( ( ph /\ x e. X ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
| 38 | 31 37 | mpbid | |- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 39 | filfbas | |- ( ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) ) |
|
| 40 | 38 39 | syl | |- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) ) |
| 41 | 26 | adantr | |- ( ( ph /\ x e. X ) -> F : A --> Y ) |
| 42 | fmval | |- ( ( Y e. _V /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) /\ F : A --> Y ) -> ( ( Y FilMap F ) ` ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) ) |
|
| 43 | 28 40 41 42 | syl3anc | |- ( ( ph /\ x e. X ) -> ( ( Y FilMap F ) ` ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) ) |
| 44 | 17 | adantr | |- ( ( ph /\ x e. X ) -> T e. ( UnifOn ` A ) ) |
| 45 | 14 | adantr | |- ( ( ph /\ x e. X ) -> F e. ( T uCn U ) ) |
| 46 | 1 5 3 | isusp | |- ( V e. UnifSp <-> ( S e. ( UnifOn ` X ) /\ J = ( unifTop ` S ) ) ) |
| 47 | 9 46 | sylib | |- ( ph -> ( S e. ( UnifOn ` X ) /\ J = ( unifTop ` S ) ) ) |
| 48 | 47 | simpld | |- ( ph -> S e. ( UnifOn ` X ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ x e. X ) -> S e. ( UnifOn ` X ) ) |
| 50 | 9 | adantr | |- ( ( ph /\ x e. X ) -> V e. UnifSp ) |
| 51 | 8 | adantr | |- ( ( ph /\ x e. X ) -> V e. TopSp ) |
| 52 | 1 3 5 | neipcfilu | |- ( ( V e. UnifSp /\ V e. TopSp /\ x e. X ) -> ( ( nei ` J ) ` { x } ) e. ( CauFilU ` S ) ) |
| 53 | 50 51 29 52 | syl3anc | |- ( ( ph /\ x e. X ) -> ( ( nei ` J ) ` { x } ) e. ( CauFilU ` S ) ) |
| 54 | 0nelfb | |- ( ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) -> -. (/) e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) |
|
| 55 | 40 54 | syl | |- ( ( ph /\ x e. X ) -> -. (/) e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) |
| 56 | trcfilu | |- ( ( S e. ( UnifOn ` X ) /\ ( ( ( nei ` J ) ` { x } ) e. ( CauFilU ` S ) /\ -. (/) e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) /\ A C_ X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
|
| 57 | 49 53 55 35 56 | syl121anc | |- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 58 | 44 | elfvexd | |- ( ( ph /\ x e. X ) -> A e. _V ) |
| 59 | ressuss | |- ( A e. _V -> ( UnifSt ` ( V |`s A ) ) = ( ( UnifSt ` V ) |`t ( A X. A ) ) ) |
|
| 60 | 5 | oveq1i | |- ( S |`t ( A X. A ) ) = ( ( UnifSt ` V ) |`t ( A X. A ) ) |
| 61 | 59 6 60 | 3eqtr4g | |- ( A e. _V -> T = ( S |`t ( A X. A ) ) ) |
| 62 | 61 | fveq2d | |- ( A e. _V -> ( CauFilU ` T ) = ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 63 | 58 62 | syl | |- ( ( ph /\ x e. X ) -> ( CauFilU ` T ) = ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 64 | 57 63 | eleqtrrd | |- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( CauFilU ` T ) ) |
| 65 | imaeq2 | |- ( a = b -> ( F " a ) = ( F " b ) ) |
|
| 66 | 65 | cbvmptv | |- ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) = ( b e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " b ) ) |
| 67 | 66 | rneqi | |- ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) = ran ( b e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " b ) ) |
| 68 | 44 27 45 64 67 | fmucnd | |- ( ( ph /\ x e. X ) -> ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) e. ( CauFilU ` U ) ) |
| 69 | cfilufg | |- ( ( U e. ( UnifOn ` Y ) /\ ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) e. ( CauFilU ` U ) ) -> ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) e. ( CauFilU ` U ) ) |
|
| 70 | 27 68 69 | syl2anc | |- ( ( ph /\ x e. X ) -> ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) e. ( CauFilU ` U ) ) |
| 71 | 43 70 | eqeltrd | |- ( ( ph /\ x e. X ) -> ( ( Y FilMap F ) ` ( ( ( nei ` J ) ` { x } ) |`t A ) ) e. ( CauFilU ` U ) ) |
| 72 | 1 2 3 4 7 8 10 11 12 13 26 15 71 | cnextucn | |- ( ph -> ( ( J CnExt K ) ` F ) e. ( J Cn K ) ) |