This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proposition 7.49 of TakeutiZaring p. 51. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 10-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.49.1 | |- F Fn On |
|
| tz7.49.2 | |- ( ph <-> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
||
| Assertion | tz7.49 | |- ( ( A e. B /\ ph ) -> E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.49.1 | |- F Fn On |
|
| 2 | tz7.49.2 | |- ( ph <-> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
|
| 3 | df-ne | |- ( ( A \ ( F " x ) ) =/= (/) <-> -. ( A \ ( F " x ) ) = (/) ) |
|
| 4 | 3 | ralbii | |- ( A. x e. On ( A \ ( F " x ) ) =/= (/) <-> A. x e. On -. ( A \ ( F " x ) ) = (/) ) |
| 5 | ralim | |- ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( A. x e. On ( A \ ( F " x ) ) =/= (/) -> A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
|
| 6 | 2 5 | sylbi | |- ( ph -> ( A. x e. On ( A \ ( F " x ) ) =/= (/) -> A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 7 | 4 6 | biimtrrid | |- ( ph -> ( A. x e. On -. ( A \ ( F " x ) ) = (/) -> A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 8 | 1 | tz7.48-3 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> -. A e. _V ) |
| 9 | elex | |- ( A e. B -> A e. _V ) |
|
| 10 | 8 9 | nsyl3 | |- ( A e. B -> -. A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) ) |
| 11 | 7 10 | nsyli | |- ( ph -> ( A e. B -> -. A. x e. On -. ( A \ ( F " x ) ) = (/) ) ) |
| 12 | dfrex2 | |- ( E. x e. On ( A \ ( F " x ) ) = (/) <-> -. A. x e. On -. ( A \ ( F " x ) ) = (/) ) |
|
| 13 | 11 12 | imbitrrdi | |- ( ph -> ( A e. B -> E. x e. On ( A \ ( F " x ) ) = (/) ) ) |
| 14 | imaeq2 | |- ( x = y -> ( F " x ) = ( F " y ) ) |
|
| 15 | 14 | difeq2d | |- ( x = y -> ( A \ ( F " x ) ) = ( A \ ( F " y ) ) ) |
| 16 | 15 | eqeq1d | |- ( x = y -> ( ( A \ ( F " x ) ) = (/) <-> ( A \ ( F " y ) ) = (/) ) ) |
| 17 | 16 | onminex | |- ( E. x e. On ( A \ ( F " x ) ) = (/) -> E. x e. On ( ( A \ ( F " x ) ) = (/) /\ A. y e. x -. ( A \ ( F " y ) ) = (/) ) ) |
| 18 | 13 17 | syl6 | |- ( ph -> ( A e. B -> E. x e. On ( ( A \ ( F " x ) ) = (/) /\ A. y e. x -. ( A \ ( F " y ) ) = (/) ) ) ) |
| 19 | df-ne | |- ( ( A \ ( F " y ) ) =/= (/) <-> -. ( A \ ( F " y ) ) = (/) ) |
|
| 20 | 19 | ralbii | |- ( A. y e. x ( A \ ( F " y ) ) =/= (/) <-> A. y e. x -. ( A \ ( F " y ) ) = (/) ) |
| 21 | 20 | anbi2i | |- ( ( ( A \ ( F " x ) ) = (/) /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) <-> ( ( A \ ( F " x ) ) = (/) /\ A. y e. x -. ( A \ ( F " y ) ) = (/) ) ) |
| 22 | 21 | rexbii | |- ( E. x e. On ( ( A \ ( F " x ) ) = (/) /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) <-> E. x e. On ( ( A \ ( F " x ) ) = (/) /\ A. y e. x -. ( A \ ( F " y ) ) = (/) ) ) |
| 23 | 18 22 | imbitrrdi | |- ( ph -> ( A e. B -> E. x e. On ( ( A \ ( F " x ) ) = (/) /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) ) ) |
| 24 | nfra1 | |- F/ x A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) |
|
| 25 | 2 24 | nfxfr | |- F/ x ph |
| 26 | simpllr | |- ( ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) /\ ( A \ ( F " x ) ) = (/) ) -> A. y e. x ( A \ ( F " y ) ) =/= (/) ) |
|
| 27 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 28 | 1 27 | ax-mp | |- Fun F |
| 29 | fvelima | |- ( ( Fun F /\ z e. ( F " x ) ) -> E. y e. x ( F ` y ) = z ) |
|
| 30 | 28 29 | mpan | |- ( z e. ( F " x ) -> E. y e. x ( F ` y ) = z ) |
| 31 | nfv | |- F/ y ph |
|
| 32 | nfra1 | |- F/ y A. y e. x ( A \ ( F " y ) ) =/= (/) |
|
| 33 | 31 32 | nfan | |- F/ y ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) |
| 34 | nfv | |- F/ y ( x e. On -> z e. A ) |
|
| 35 | rsp | |- ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( y e. x -> ( A \ ( F " y ) ) =/= (/) ) ) |
|
| 36 | 35 | adantld | |- ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( ( x e. On /\ y e. x ) -> ( A \ ( F " y ) ) =/= (/) ) ) |
| 37 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 38 | 15 | neeq1d | |- ( x = y -> ( ( A \ ( F " x ) ) =/= (/) <-> ( A \ ( F " y ) ) =/= (/) ) ) |
| 39 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 40 | 39 15 | eleq12d | |- ( x = y -> ( ( F ` x ) e. ( A \ ( F " x ) ) <-> ( F ` y ) e. ( A \ ( F " y ) ) ) ) |
| 41 | 38 40 | imbi12d | |- ( x = y -> ( ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) <-> ( ( A \ ( F " y ) ) =/= (/) -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 42 | 41 | rspcv | |- ( y e. On -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> ( ( A \ ( F " y ) ) =/= (/) -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 43 | 2 42 | biimtrid | |- ( y e. On -> ( ph -> ( ( A \ ( F " y ) ) =/= (/) -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 44 | 43 | com23 | |- ( y e. On -> ( ( A \ ( F " y ) ) =/= (/) -> ( ph -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 45 | 37 44 | syl | |- ( ( x e. On /\ y e. x ) -> ( ( A \ ( F " y ) ) =/= (/) -> ( ph -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 46 | 36 45 | sylcom | |- ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( ( x e. On /\ y e. x ) -> ( ph -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 47 | 46 | com3r | |- ( ph -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( ( x e. On /\ y e. x ) -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 48 | 47 | imp | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( ( x e. On /\ y e. x ) -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) |
| 49 | 48 | expcomd | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( y e. x -> ( x e. On -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 50 | eldifi | |- ( ( F ` y ) e. ( A \ ( F " y ) ) -> ( F ` y ) e. A ) |
|
| 51 | eleq1 | |- ( ( F ` y ) = z -> ( ( F ` y ) e. A <-> z e. A ) ) |
|
| 52 | 50 51 | syl5ibcom | |- ( ( F ` y ) e. ( A \ ( F " y ) ) -> ( ( F ` y ) = z -> z e. A ) ) |
| 53 | 49 52 | syl8 | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( y e. x -> ( x e. On -> ( ( F ` y ) = z -> z e. A ) ) ) ) |
| 54 | 53 | com34 | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( y e. x -> ( ( F ` y ) = z -> ( x e. On -> z e. A ) ) ) ) |
| 55 | 33 34 54 | rexlimd | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( E. y e. x ( F ` y ) = z -> ( x e. On -> z e. A ) ) ) |
| 56 | 30 55 | syl5 | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( z e. ( F " x ) -> ( x e. On -> z e. A ) ) ) |
| 57 | 56 | com23 | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( x e. On -> ( z e. ( F " x ) -> z e. A ) ) ) |
| 58 | 57 | imp | |- ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) -> ( z e. ( F " x ) -> z e. A ) ) |
| 59 | 58 | ssrdv | |- ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) -> ( F " x ) C_ A ) |
| 60 | ssdif0 | |- ( A C_ ( F " x ) <-> ( A \ ( F " x ) ) = (/) ) |
|
| 61 | 60 | biimpri | |- ( ( A \ ( F " x ) ) = (/) -> A C_ ( F " x ) ) |
| 62 | 59 61 | anim12i | |- ( ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) /\ ( A \ ( F " x ) ) = (/) ) -> ( ( F " x ) C_ A /\ A C_ ( F " x ) ) ) |
| 63 | eqss | |- ( ( F " x ) = A <-> ( ( F " x ) C_ A /\ A C_ ( F " x ) ) ) |
|
| 64 | 62 63 | sylibr | |- ( ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) /\ ( A \ ( F " x ) ) = (/) ) -> ( F " x ) = A ) |
| 65 | onss | |- ( x e. On -> x C_ On ) |
|
| 66 | 32 31 | nfan | |- F/ y ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) |
| 67 | nfv | |- F/ y x C_ On |
|
| 68 | 66 67 | nfan | |- F/ y ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) /\ x C_ On ) |
| 69 | nfv | |- F/ z ( ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) /\ x C_ On ) /\ y e. x ) |
|
| 70 | ssel | |- ( x C_ On -> ( y e. x -> y e. On ) ) |
|
| 71 | onss | |- ( y e. On -> y C_ On ) |
|
| 72 | 1 | fndmi | |- dom F = On |
| 73 | 71 72 | sseqtrrdi | |- ( y e. On -> y C_ dom F ) |
| 74 | funfvima2 | |- ( ( Fun F /\ y C_ dom F ) -> ( z e. y -> ( F ` z ) e. ( F " y ) ) ) |
|
| 75 | 28 73 74 | sylancr | |- ( y e. On -> ( z e. y -> ( F ` z ) e. ( F " y ) ) ) |
| 76 | 70 75 | syl6 | |- ( x C_ On -> ( y e. x -> ( z e. y -> ( F ` z ) e. ( F " y ) ) ) ) |
| 77 | 35 | com12 | |- ( y e. x -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( A \ ( F " y ) ) =/= (/) ) ) |
| 78 | 77 | a1i | |- ( x C_ On -> ( y e. x -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( A \ ( F " y ) ) =/= (/) ) ) ) |
| 79 | 70 78 44 | syl10 | |- ( x C_ On -> ( y e. x -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( ph -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) ) |
| 80 | 79 | imp4a | |- ( x C_ On -> ( y e. x -> ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> ( F ` y ) e. ( A \ ( F " y ) ) ) ) ) |
| 81 | eldifn | |- ( ( F ` y ) e. ( A \ ( F " y ) ) -> -. ( F ` y ) e. ( F " y ) ) |
|
| 82 | eleq1a | |- ( ( F ` z ) e. ( F " y ) -> ( ( F ` y ) = ( F ` z ) -> ( F ` y ) e. ( F " y ) ) ) |
|
| 83 | 82 | con3d | |- ( ( F ` z ) e. ( F " y ) -> ( -. ( F ` y ) e. ( F " y ) -> -. ( F ` y ) = ( F ` z ) ) ) |
| 84 | 81 83 | syl5com | |- ( ( F ` y ) e. ( A \ ( F " y ) ) -> ( ( F ` z ) e. ( F " y ) -> -. ( F ` y ) = ( F ` z ) ) ) |
| 85 | 80 84 | syl8 | |- ( x C_ On -> ( y e. x -> ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> ( ( F ` z ) e. ( F " y ) -> -. ( F ` y ) = ( F ` z ) ) ) ) ) |
| 86 | 85 | com34 | |- ( x C_ On -> ( y e. x -> ( ( F ` z ) e. ( F " y ) -> ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> -. ( F ` y ) = ( F ` z ) ) ) ) ) |
| 87 | 76 86 | syldd | |- ( x C_ On -> ( y e. x -> ( z e. y -> ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> -. ( F ` y ) = ( F ` z ) ) ) ) ) |
| 88 | 87 | com4r | |- ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> ( x C_ On -> ( y e. x -> ( z e. y -> -. ( F ` y ) = ( F ` z ) ) ) ) ) |
| 89 | 88 | imp31 | |- ( ( ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) /\ x C_ On ) /\ y e. x ) -> ( z e. y -> -. ( F ` y ) = ( F ` z ) ) ) |
| 90 | 69 89 | ralrimi | |- ( ( ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) /\ x C_ On ) /\ y e. x ) -> A. z e. y -. ( F ` y ) = ( F ` z ) ) |
| 91 | 90 | ex | |- ( ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) /\ x C_ On ) -> ( y e. x -> A. z e. y -. ( F ` y ) = ( F ` z ) ) ) |
| 92 | 68 91 | ralrimi | |- ( ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) /\ x C_ On ) -> A. y e. x A. z e. y -. ( F ` y ) = ( F ` z ) ) |
| 93 | 92 | ex | |- ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> ( x C_ On -> A. y e. x A. z e. y -. ( F ` y ) = ( F ` z ) ) ) |
| 94 | 93 | ancld | |- ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> ( x C_ On -> ( x C_ On /\ A. y e. x A. z e. y -. ( F ` y ) = ( F ` z ) ) ) ) |
| 95 | 1 | tz7.48lem | |- ( ( x C_ On /\ A. y e. x A. z e. y -. ( F ` y ) = ( F ` z ) ) -> Fun `' ( F |` x ) ) |
| 96 | 65 94 95 | syl56 | |- ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ph ) -> ( x e. On -> Fun `' ( F |` x ) ) ) |
| 97 | 96 | ancoms | |- ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( x e. On -> Fun `' ( F |` x ) ) ) |
| 98 | 97 | imp | |- ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) -> Fun `' ( F |` x ) ) |
| 99 | 98 | adantr | |- ( ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) /\ ( A \ ( F " x ) ) = (/) ) -> Fun `' ( F |` x ) ) |
| 100 | 26 64 99 | 3jca | |- ( ( ( ( ph /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) /\ x e. On ) /\ ( A \ ( F " x ) ) = (/) ) -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |
| 101 | 100 | exp41 | |- ( ph -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( x e. On -> ( ( A \ ( F " x ) ) = (/) -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) ) ) ) |
| 102 | 101 | com23 | |- ( ph -> ( x e. On -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( ( A \ ( F " x ) ) = (/) -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) ) ) ) |
| 103 | 102 | com34 | |- ( ph -> ( x e. On -> ( ( A \ ( F " x ) ) = (/) -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) ) ) ) |
| 104 | 103 | imp4a | |- ( ph -> ( x e. On -> ( ( ( A \ ( F " x ) ) = (/) /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) ) ) |
| 105 | 25 104 | reximdai | |- ( ph -> ( E. x e. On ( ( A \ ( F " x ) ) = (/) /\ A. y e. x ( A \ ( F " y ) ) =/= (/) ) -> E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) ) |
| 106 | 23 105 | syld | |- ( ph -> ( A e. B -> E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) ) |
| 107 | 106 | impcom | |- ( ( A e. B /\ ph ) -> E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |