This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a wff is true for an ordinal number, then there is the smallest ordinal number for which it is true. (Contributed by NM, 2-Feb-1997) (Proof shortened by Mario Carneiro, 20-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onminex.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | onminex | |- ( E. x e. On ph -> E. x e. On ( ph /\ A. y e. x -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onminex.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | ssrab2 | |- { x e. On | ph } C_ On |
|
| 3 | rabn0 | |- ( { x e. On | ph } =/= (/) <-> E. x e. On ph ) |
|
| 4 | 3 | biimpri | |- ( E. x e. On ph -> { x e. On | ph } =/= (/) ) |
| 5 | oninton | |- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. On ) |
|
| 6 | 2 4 5 | sylancr | |- ( E. x e. On ph -> |^| { x e. On | ph } e. On ) |
| 7 | onminesb | |- ( E. x e. On ph -> [. |^| { x e. On | ph } / x ]. ph ) |
|
| 8 | onss | |- ( |^| { x e. On | ph } e. On -> |^| { x e. On | ph } C_ On ) |
|
| 9 | 6 8 | syl | |- ( E. x e. On ph -> |^| { x e. On | ph } C_ On ) |
| 10 | 9 | sseld | |- ( E. x e. On ph -> ( y e. |^| { x e. On | ph } -> y e. On ) ) |
| 11 | 1 | onnminsb | |- ( y e. On -> ( y e. |^| { x e. On | ph } -> -. ps ) ) |
| 12 | 10 11 | syli | |- ( E. x e. On ph -> ( y e. |^| { x e. On | ph } -> -. ps ) ) |
| 13 | 12 | ralrimiv | |- ( E. x e. On ph -> A. y e. |^| { x e. On | ph } -. ps ) |
| 14 | dfsbcq2 | |- ( z = |^| { x e. On | ph } -> ( [ z / x ] ph <-> [. |^| { x e. On | ph } / x ]. ph ) ) |
|
| 15 | raleq | |- ( z = |^| { x e. On | ph } -> ( A. y e. z -. ps <-> A. y e. |^| { x e. On | ph } -. ps ) ) |
|
| 16 | 14 15 | anbi12d | |- ( z = |^| { x e. On | ph } -> ( ( [ z / x ] ph /\ A. y e. z -. ps ) <-> ( [. |^| { x e. On | ph } / x ]. ph /\ A. y e. |^| { x e. On | ph } -. ps ) ) ) |
| 17 | 16 | rspcev | |- ( ( |^| { x e. On | ph } e. On /\ ( [. |^| { x e. On | ph } / x ]. ph /\ A. y e. |^| { x e. On | ph } -. ps ) ) -> E. z e. On ( [ z / x ] ph /\ A. y e. z -. ps ) ) |
| 18 | 6 7 13 17 | syl12anc | |- ( E. x e. On ph -> E. z e. On ( [ z / x ] ph /\ A. y e. z -. ps ) ) |
| 19 | nfv | |- F/ z ( ph /\ A. y e. x -. ps ) |
|
| 20 | nfs1v | |- F/ x [ z / x ] ph |
|
| 21 | nfv | |- F/ x A. y e. z -. ps |
|
| 22 | 20 21 | nfan | |- F/ x ( [ z / x ] ph /\ A. y e. z -. ps ) |
| 23 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 24 | raleq | |- ( x = z -> ( A. y e. x -. ps <-> A. y e. z -. ps ) ) |
|
| 25 | 23 24 | anbi12d | |- ( x = z -> ( ( ph /\ A. y e. x -. ps ) <-> ( [ z / x ] ph /\ A. y e. z -. ps ) ) ) |
| 26 | 19 22 25 | cbvrexw | |- ( E. x e. On ( ph /\ A. y e. x -. ps ) <-> E. z e. On ( [ z / x ] ph /\ A. y e. z -. ps ) ) |
| 27 | 18 26 | sylibr | |- ( E. x e. On ph -> E. x e. On ( ph /\ A. y e. x -. ps ) ) |