This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Proposition 7.49 of TakeutiZaring p. 51. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 19-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz7.49c.1 | |- F Fn On |
|
| Assertion | tz7.49c | |- ( ( A e. B /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.49c.1 | |- F Fn On |
|
| 2 | biid | |- ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) <-> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
|
| 3 | 1 2 | tz7.49 | |- ( ( A e. B /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |
| 4 | 3simpc | |- ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) -> ( ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |
|
| 5 | onss | |- ( x e. On -> x C_ On ) |
|
| 6 | fnssres | |- ( ( F Fn On /\ x C_ On ) -> ( F |` x ) Fn x ) |
|
| 7 | 1 5 6 | sylancr | |- ( x e. On -> ( F |` x ) Fn x ) |
| 8 | df-ima | |- ( F " x ) = ran ( F |` x ) |
|
| 9 | 8 | eqeq1i | |- ( ( F " x ) = A <-> ran ( F |` x ) = A ) |
| 10 | 9 | biimpi | |- ( ( F " x ) = A -> ran ( F |` x ) = A ) |
| 11 | 7 10 | anim12i | |- ( ( x e. On /\ ( F " x ) = A ) -> ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) ) |
| 12 | 11 | anim1i | |- ( ( ( x e. On /\ ( F " x ) = A ) /\ Fun `' ( F |` x ) ) -> ( ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) /\ Fun `' ( F |` x ) ) ) |
| 13 | dff1o2 | |- ( ( F |` x ) : x -1-1-onto-> A <-> ( ( F |` x ) Fn x /\ Fun `' ( F |` x ) /\ ran ( F |` x ) = A ) ) |
|
| 14 | 3anan32 | |- ( ( ( F |` x ) Fn x /\ Fun `' ( F |` x ) /\ ran ( F |` x ) = A ) <-> ( ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) /\ Fun `' ( F |` x ) ) ) |
|
| 15 | 13 14 | bitri | |- ( ( F |` x ) : x -1-1-onto-> A <-> ( ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) /\ Fun `' ( F |` x ) ) ) |
| 16 | 12 15 | sylibr | |- ( ( ( x e. On /\ ( F " x ) = A ) /\ Fun `' ( F |` x ) ) -> ( F |` x ) : x -1-1-onto-> A ) |
| 17 | 16 | expl | |- ( x e. On -> ( ( ( F " x ) = A /\ Fun `' ( F |` x ) ) -> ( F |` x ) : x -1-1-onto-> A ) ) |
| 18 | 4 17 | syl5 | |- ( x e. On -> ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) -> ( F |` x ) : x -1-1-onto-> A ) ) |
| 19 | 18 | reximia | |- ( E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| 20 | 3 19 | syl | |- ( ( A e. B /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |