This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proposition 7.48(3) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz7.48.1 | |- F Fn On |
|
| Assertion | tz7.48-3 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> -. A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.48.1 | |- F Fn On |
|
| 2 | 1 | fndmi | |- dom F = On |
| 3 | onprc | |- -. On e. _V |
|
| 4 | 2 3 | eqneltri | |- -. dom F e. _V |
| 5 | 1 | tz7.48-2 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> Fun `' F ) |
| 6 | funrnex | |- ( dom `' F e. _V -> ( Fun `' F -> ran `' F e. _V ) ) |
|
| 7 | 6 | com12 | |- ( Fun `' F -> ( dom `' F e. _V -> ran `' F e. _V ) ) |
| 8 | df-rn | |- ran F = dom `' F |
|
| 9 | 8 | eleq1i | |- ( ran F e. _V <-> dom `' F e. _V ) |
| 10 | dfdm4 | |- dom F = ran `' F |
|
| 11 | 10 | eleq1i | |- ( dom F e. _V <-> ran `' F e. _V ) |
| 12 | 7 9 11 | 3imtr4g | |- ( Fun `' F -> ( ran F e. _V -> dom F e. _V ) ) |
| 13 | 5 12 | syl | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( ran F e. _V -> dom F e. _V ) ) |
| 14 | 4 13 | mtoi | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> -. ran F e. _V ) |
| 15 | 1 | tz7.48-1 | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ran F C_ A ) |
| 16 | ssexg | |- ( ( ran F C_ A /\ A e. _V ) -> ran F e. _V ) |
|
| 17 | 16 | ex | |- ( ran F C_ A -> ( A e. _V -> ran F e. _V ) ) |
| 18 | 15 17 | syl | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> ( A e. _V -> ran F e. _V ) ) |
| 19 | 14 18 | mtod | |- ( A. x e. On ( F ` x ) e. ( A \ ( F " x ) ) -> -. A e. _V ) |