This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | topgele | |- ( J e. ( TopOn ` X ) -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 2 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 3 | 1 2 | syl | |- ( J e. ( TopOn ` X ) -> (/) e. J ) |
| 4 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 5 | 3 4 | prssd | |- ( J e. ( TopOn ` X ) -> { (/) , X } C_ J ) |
| 6 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 7 | eqimss2 | |- ( X = U. J -> U. J C_ X ) |
|
| 8 | 6 7 | syl | |- ( J e. ( TopOn ` X ) -> U. J C_ X ) |
| 9 | sspwuni | |- ( J C_ ~P X <-> U. J C_ X ) |
|
| 10 | 8 9 | sylibr | |- ( J e. ( TopOn ` X ) -> J C_ ~P X ) |
| 11 | 5 10 | jca | |- ( J e. ( TopOn ` X ) -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) |