This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txhmeo.1 | |- X = U. J |
|
| txhmeo.2 | |- Y = U. K |
||
| txhmeo.3 | |- ( ph -> F e. ( J Homeo L ) ) |
||
| txhmeo.4 | |- ( ph -> G e. ( K Homeo M ) ) |
||
| Assertion | txhmeo | |- ( ph -> ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Homeo ( L tX M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txhmeo.1 | |- X = U. J |
|
| 2 | txhmeo.2 | |- Y = U. K |
|
| 3 | txhmeo.3 | |- ( ph -> F e. ( J Homeo L ) ) |
|
| 4 | txhmeo.4 | |- ( ph -> G e. ( K Homeo M ) ) |
|
| 5 | hmeocn | |- ( F e. ( J Homeo L ) -> F e. ( J Cn L ) ) |
|
| 6 | 3 5 | syl | |- ( ph -> F e. ( J Cn L ) ) |
| 7 | cntop1 | |- ( F e. ( J Cn L ) -> J e. Top ) |
|
| 8 | 6 7 | syl | |- ( ph -> J e. Top ) |
| 9 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 10 | 8 9 | sylib | |- ( ph -> J e. ( TopOn ` X ) ) |
| 11 | hmeocn | |- ( G e. ( K Homeo M ) -> G e. ( K Cn M ) ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. ( K Cn M ) ) |
| 13 | cntop1 | |- ( G e. ( K Cn M ) -> K e. Top ) |
|
| 14 | 12 13 | syl | |- ( ph -> K e. Top ) |
| 15 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 16 | 14 15 | sylib | |- ( ph -> K e. ( TopOn ` Y ) ) |
| 17 | 10 16 | cnmpt1st | |- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |
| 18 | 10 16 17 6 | cnmpt21f | |- ( ph -> ( x e. X , y e. Y |-> ( F ` x ) ) e. ( ( J tX K ) Cn L ) ) |
| 19 | 10 16 | cnmpt2nd | |- ( ph -> ( x e. X , y e. Y |-> y ) e. ( ( J tX K ) Cn K ) ) |
| 20 | 10 16 19 12 | cnmpt21f | |- ( ph -> ( x e. X , y e. Y |-> ( G ` y ) ) e. ( ( J tX K ) Cn M ) ) |
| 21 | 10 16 18 20 | cnmpt2t | |- ( ph -> ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Cn ( L tX M ) ) ) |
| 22 | vex | |- x e. _V |
|
| 23 | vex | |- y e. _V |
|
| 24 | 22 23 | op1std | |- ( u = <. x , y >. -> ( 1st ` u ) = x ) |
| 25 | 24 | fveq2d | |- ( u = <. x , y >. -> ( F ` ( 1st ` u ) ) = ( F ` x ) ) |
| 26 | 22 23 | op2ndd | |- ( u = <. x , y >. -> ( 2nd ` u ) = y ) |
| 27 | 26 | fveq2d | |- ( u = <. x , y >. -> ( G ` ( 2nd ` u ) ) = ( G ` y ) ) |
| 28 | 25 27 | opeq12d | |- ( u = <. x , y >. -> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. = <. ( F ` x ) , ( G ` y ) >. ) |
| 29 | 28 | mpompt | |- ( u e. ( X X. Y ) |-> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. ) = ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) |
| 30 | 29 | eqcomi | |- ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( u e. ( X X. Y ) |-> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. ) |
| 31 | eqid | |- U. L = U. L |
|
| 32 | 1 31 | cnf | |- ( F e. ( J Cn L ) -> F : X --> U. L ) |
| 33 | 6 32 | syl | |- ( ph -> F : X --> U. L ) |
| 34 | xp1st | |- ( u e. ( X X. Y ) -> ( 1st ` u ) e. X ) |
|
| 35 | ffvelcdm | |- ( ( F : X --> U. L /\ ( 1st ` u ) e. X ) -> ( F ` ( 1st ` u ) ) e. U. L ) |
|
| 36 | 33 34 35 | syl2an | |- ( ( ph /\ u e. ( X X. Y ) ) -> ( F ` ( 1st ` u ) ) e. U. L ) |
| 37 | eqid | |- U. M = U. M |
|
| 38 | 2 37 | cnf | |- ( G e. ( K Cn M ) -> G : Y --> U. M ) |
| 39 | 12 38 | syl | |- ( ph -> G : Y --> U. M ) |
| 40 | xp2nd | |- ( u e. ( X X. Y ) -> ( 2nd ` u ) e. Y ) |
|
| 41 | ffvelcdm | |- ( ( G : Y --> U. M /\ ( 2nd ` u ) e. Y ) -> ( G ` ( 2nd ` u ) ) e. U. M ) |
|
| 42 | 39 40 41 | syl2an | |- ( ( ph /\ u e. ( X X. Y ) ) -> ( G ` ( 2nd ` u ) ) e. U. M ) |
| 43 | 36 42 | opelxpd | |- ( ( ph /\ u e. ( X X. Y ) ) -> <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. e. ( U. L X. U. M ) ) |
| 44 | 1 31 | hmeof1o | |- ( F e. ( J Homeo L ) -> F : X -1-1-onto-> U. L ) |
| 45 | 3 44 | syl | |- ( ph -> F : X -1-1-onto-> U. L ) |
| 46 | f1ocnv | |- ( F : X -1-1-onto-> U. L -> `' F : U. L -1-1-onto-> X ) |
|
| 47 | f1of | |- ( `' F : U. L -1-1-onto-> X -> `' F : U. L --> X ) |
|
| 48 | 45 46 47 | 3syl | |- ( ph -> `' F : U. L --> X ) |
| 49 | xp1st | |- ( v e. ( U. L X. U. M ) -> ( 1st ` v ) e. U. L ) |
|
| 50 | ffvelcdm | |- ( ( `' F : U. L --> X /\ ( 1st ` v ) e. U. L ) -> ( `' F ` ( 1st ` v ) ) e. X ) |
|
| 51 | 48 49 50 | syl2an | |- ( ( ph /\ v e. ( U. L X. U. M ) ) -> ( `' F ` ( 1st ` v ) ) e. X ) |
| 52 | 2 37 | hmeof1o | |- ( G e. ( K Homeo M ) -> G : Y -1-1-onto-> U. M ) |
| 53 | 4 52 | syl | |- ( ph -> G : Y -1-1-onto-> U. M ) |
| 54 | f1ocnv | |- ( G : Y -1-1-onto-> U. M -> `' G : U. M -1-1-onto-> Y ) |
|
| 55 | f1of | |- ( `' G : U. M -1-1-onto-> Y -> `' G : U. M --> Y ) |
|
| 56 | 53 54 55 | 3syl | |- ( ph -> `' G : U. M --> Y ) |
| 57 | xp2nd | |- ( v e. ( U. L X. U. M ) -> ( 2nd ` v ) e. U. M ) |
|
| 58 | ffvelcdm | |- ( ( `' G : U. M --> Y /\ ( 2nd ` v ) e. U. M ) -> ( `' G ` ( 2nd ` v ) ) e. Y ) |
|
| 59 | 56 57 58 | syl2an | |- ( ( ph /\ v e. ( U. L X. U. M ) ) -> ( `' G ` ( 2nd ` v ) ) e. Y ) |
| 60 | 51 59 | opelxpd | |- ( ( ph /\ v e. ( U. L X. U. M ) ) -> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. e. ( X X. Y ) ) |
| 61 | 45 | adantr | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> F : X -1-1-onto-> U. L ) |
| 62 | 34 | ad2antrl | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 1st ` u ) e. X ) |
| 63 | 49 | ad2antll | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 1st ` v ) e. U. L ) |
| 64 | f1ocnvfvb | |- ( ( F : X -1-1-onto-> U. L /\ ( 1st ` u ) e. X /\ ( 1st ` v ) e. U. L ) -> ( ( F ` ( 1st ` u ) ) = ( 1st ` v ) <-> ( `' F ` ( 1st ` v ) ) = ( 1st ` u ) ) ) |
|
| 65 | 61 62 63 64 | syl3anc | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( F ` ( 1st ` u ) ) = ( 1st ` v ) <-> ( `' F ` ( 1st ` v ) ) = ( 1st ` u ) ) ) |
| 66 | eqcom | |- ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) <-> ( F ` ( 1st ` u ) ) = ( 1st ` v ) ) |
|
| 67 | eqcom | |- ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) <-> ( `' F ` ( 1st ` v ) ) = ( 1st ` u ) ) |
|
| 68 | 65 66 67 | 3bitr4g | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) <-> ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) ) ) |
| 69 | 53 | adantr | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> G : Y -1-1-onto-> U. M ) |
| 70 | 40 | ad2antrl | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 2nd ` u ) e. Y ) |
| 71 | 57 | ad2antll | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( 2nd ` v ) e. U. M ) |
| 72 | f1ocnvfvb | |- ( ( G : Y -1-1-onto-> U. M /\ ( 2nd ` u ) e. Y /\ ( 2nd ` v ) e. U. M ) -> ( ( G ` ( 2nd ` u ) ) = ( 2nd ` v ) <-> ( `' G ` ( 2nd ` v ) ) = ( 2nd ` u ) ) ) |
|
| 73 | 69 70 71 72 | syl3anc | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( G ` ( 2nd ` u ) ) = ( 2nd ` v ) <-> ( `' G ` ( 2nd ` v ) ) = ( 2nd ` u ) ) ) |
| 74 | eqcom | |- ( ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) <-> ( G ` ( 2nd ` u ) ) = ( 2nd ` v ) ) |
|
| 75 | eqcom | |- ( ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) <-> ( `' G ` ( 2nd ` v ) ) = ( 2nd ` u ) ) |
|
| 76 | 73 74 75 | 3bitr4g | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) <-> ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) |
| 77 | 68 76 | anbi12d | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) /\ ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) ) <-> ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) /\ ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) ) |
| 78 | eqop | |- ( v e. ( U. L X. U. M ) -> ( v = <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. <-> ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) /\ ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) ) ) ) |
|
| 79 | 78 | ad2antll | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( v = <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. <-> ( ( 1st ` v ) = ( F ` ( 1st ` u ) ) /\ ( 2nd ` v ) = ( G ` ( 2nd ` u ) ) ) ) ) |
| 80 | eqop | |- ( u e. ( X X. Y ) -> ( u = <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. <-> ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) /\ ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) ) |
|
| 81 | 80 | ad2antrl | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( u = <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. <-> ( ( 1st ` u ) = ( `' F ` ( 1st ` v ) ) /\ ( 2nd ` u ) = ( `' G ` ( 2nd ` v ) ) ) ) ) |
| 82 | 77 79 81 | 3bitr4rd | |- ( ( ph /\ ( u e. ( X X. Y ) /\ v e. ( U. L X. U. M ) ) ) -> ( u = <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. <-> v = <. ( F ` ( 1st ` u ) ) , ( G ` ( 2nd ` u ) ) >. ) ) |
| 83 | 30 43 60 82 | f1ocnv2d | |- ( ph -> ( ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) : ( X X. Y ) -1-1-onto-> ( U. L X. U. M ) /\ `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( v e. ( U. L X. U. M ) |-> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. ) ) ) |
| 84 | 83 | simprd | |- ( ph -> `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( v e. ( U. L X. U. M ) |-> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. ) ) |
| 85 | vex | |- z e. _V |
|
| 86 | vex | |- w e. _V |
|
| 87 | 85 86 | op1std | |- ( v = <. z , w >. -> ( 1st ` v ) = z ) |
| 88 | 87 | fveq2d | |- ( v = <. z , w >. -> ( `' F ` ( 1st ` v ) ) = ( `' F ` z ) ) |
| 89 | 85 86 | op2ndd | |- ( v = <. z , w >. -> ( 2nd ` v ) = w ) |
| 90 | 89 | fveq2d | |- ( v = <. z , w >. -> ( `' G ` ( 2nd ` v ) ) = ( `' G ` w ) ) |
| 91 | 88 90 | opeq12d | |- ( v = <. z , w >. -> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. = <. ( `' F ` z ) , ( `' G ` w ) >. ) |
| 92 | 91 | mpompt | |- ( v e. ( U. L X. U. M ) |-> <. ( `' F ` ( 1st ` v ) ) , ( `' G ` ( 2nd ` v ) ) >. ) = ( z e. U. L , w e. U. M |-> <. ( `' F ` z ) , ( `' G ` w ) >. ) |
| 93 | 84 92 | eqtrdi | |- ( ph -> `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) = ( z e. U. L , w e. U. M |-> <. ( `' F ` z ) , ( `' G ` w ) >. ) ) |
| 94 | cntop2 | |- ( F e. ( J Cn L ) -> L e. Top ) |
|
| 95 | 6 94 | syl | |- ( ph -> L e. Top ) |
| 96 | 31 | toptopon | |- ( L e. Top <-> L e. ( TopOn ` U. L ) ) |
| 97 | 95 96 | sylib | |- ( ph -> L e. ( TopOn ` U. L ) ) |
| 98 | cntop2 | |- ( G e. ( K Cn M ) -> M e. Top ) |
|
| 99 | 12 98 | syl | |- ( ph -> M e. Top ) |
| 100 | 37 | toptopon | |- ( M e. Top <-> M e. ( TopOn ` U. M ) ) |
| 101 | 99 100 | sylib | |- ( ph -> M e. ( TopOn ` U. M ) ) |
| 102 | 97 101 | cnmpt1st | |- ( ph -> ( z e. U. L , w e. U. M |-> z ) e. ( ( L tX M ) Cn L ) ) |
| 103 | hmeocnvcn | |- ( F e. ( J Homeo L ) -> `' F e. ( L Cn J ) ) |
|
| 104 | 3 103 | syl | |- ( ph -> `' F e. ( L Cn J ) ) |
| 105 | 97 101 102 104 | cnmpt21f | |- ( ph -> ( z e. U. L , w e. U. M |-> ( `' F ` z ) ) e. ( ( L tX M ) Cn J ) ) |
| 106 | 97 101 | cnmpt2nd | |- ( ph -> ( z e. U. L , w e. U. M |-> w ) e. ( ( L tX M ) Cn M ) ) |
| 107 | hmeocnvcn | |- ( G e. ( K Homeo M ) -> `' G e. ( M Cn K ) ) |
|
| 108 | 4 107 | syl | |- ( ph -> `' G e. ( M Cn K ) ) |
| 109 | 97 101 106 108 | cnmpt21f | |- ( ph -> ( z e. U. L , w e. U. M |-> ( `' G ` w ) ) e. ( ( L tX M ) Cn K ) ) |
| 110 | 97 101 105 109 | cnmpt2t | |- ( ph -> ( z e. U. L , w e. U. M |-> <. ( `' F ` z ) , ( `' G ` w ) >. ) e. ( ( L tX M ) Cn ( J tX K ) ) ) |
| 111 | 93 110 | eqeltrd | |- ( ph -> `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( L tX M ) Cn ( J tX K ) ) ) |
| 112 | ishmeo | |- ( ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Homeo ( L tX M ) ) <-> ( ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Cn ( L tX M ) ) /\ `' ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( L tX M ) Cn ( J tX K ) ) ) ) |
|
| 113 | 21 111 112 | sylanbrc | |- ( ph -> ( x e. X , y e. Y |-> <. ( F ` x ) , ( G ` y ) >. ) e. ( ( J tX K ) Homeo ( L tX M ) ) ) |