This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hmeof1o.1 | |- X = U. J |
|
| hmeof1o.2 | |- Y = U. K |
||
| Assertion | hmeof1o | |- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeof1o.1 | |- X = U. J |
|
| 2 | hmeof1o.2 | |- Y = U. K |
|
| 3 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 4 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 5 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 6 | 4 5 | sylib | |- ( F e. ( J Cn K ) -> J e. ( TopOn ` X ) ) |
| 7 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 8 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 9 | 7 8 | sylib | |- ( F e. ( J Cn K ) -> K e. ( TopOn ` Y ) ) |
| 10 | 6 9 | jca | |- ( F e. ( J Cn K ) -> ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) ) |
| 11 | 3 10 | syl | |- ( F e. ( J Homeo K ) -> ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) ) |
| 12 | hmeof1o2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> F : X -1-1-onto-> Y ) |
|
| 13 | 12 | 3expia | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Homeo K ) -> F : X -1-1-onto-> Y ) ) |
| 14 | 11 13 | mpcom | |- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> Y ) |