This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . A property of finite character is closed under subsets. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | |- ( ph -> F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) ) |
|
| ttukeylem.2 | |- ( ph -> B e. A ) |
||
| ttukeylem.3 | |- ( ph -> A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) |
||
| Assertion | ttukeylem2 | |- ( ( ph /\ ( C e. A /\ D C_ C ) ) -> D e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | |- ( ph -> F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) ) |
|
| 2 | ttukeylem.2 | |- ( ph -> B e. A ) |
|
| 3 | ttukeylem.3 | |- ( ph -> A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) |
|
| 4 | simpr | |- ( ( ph /\ D C_ C ) -> D C_ C ) |
|
| 5 | 4 | sspwd | |- ( ( ph /\ D C_ C ) -> ~P D C_ ~P C ) |
| 6 | ssrin | |- ( ~P D C_ ~P C -> ( ~P D i^i Fin ) C_ ( ~P C i^i Fin ) ) |
|
| 7 | sstr2 | |- ( ( ~P D i^i Fin ) C_ ( ~P C i^i Fin ) -> ( ( ~P C i^i Fin ) C_ A -> ( ~P D i^i Fin ) C_ A ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( ph /\ D C_ C ) -> ( ( ~P C i^i Fin ) C_ A -> ( ~P D i^i Fin ) C_ A ) ) |
| 9 | 1 2 3 | ttukeylem1 | |- ( ph -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ D C_ C ) -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
| 11 | 1 2 3 | ttukeylem1 | |- ( ph -> ( D e. A <-> ( ~P D i^i Fin ) C_ A ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ D C_ C ) -> ( D e. A <-> ( ~P D i^i Fin ) C_ A ) ) |
| 13 | 8 10 12 | 3imtr4d | |- ( ( ph /\ D C_ C ) -> ( C e. A -> D e. A ) ) |
| 14 | 13 | impancom | |- ( ( ph /\ C e. A ) -> ( D C_ C -> D e. A ) ) |
| 15 | 14 | impr | |- ( ( ph /\ ( C e. A /\ D C_ C ) ) -> D e. A ) |