This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If A is a nonempty collection of finite character, then A has a maximal element with respect to inclusion. Here "finite character" means that x e. A iff every finite subset of x is in A . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ttukey.1 | |- A e. _V |
|
| Assertion | ttukey | |- ( ( A =/= (/) /\ A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) -> E. x e. A A. y e. A -. x C. y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukey.1 | |- A e. _V |
|
| 2 | 1 | uniex | |- U. A e. _V |
| 3 | numth3 | |- ( U. A e. _V -> U. A e. dom card ) |
|
| 4 | 2 3 | ax-mp | |- U. A e. dom card |
| 5 | ttukeyg | |- ( ( U. A e. dom card /\ A =/= (/) /\ A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) -> E. x e. A A. y e. A -. x C. y ) |
|
| 6 | 4 5 | mp3an1 | |- ( ( A =/= (/) /\ A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) -> E. x e. A A. y e. A -. x C. y ) |