This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a proper class, then the recursive function generator at (/) is the empty set. (Contributed by Scott Fenton, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdg0n | |- ( -. A e. _V -> ( rec ( F , A ) ` (/) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | |- (/) e. On |
|
| 2 | df-rdg | |- rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 3 | 2 | tfr2 | |- ( (/) e. On -> ( rec ( F , A ) ` (/) ) = ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) ) |
| 4 | 1 3 | ax-mp | |- ( rec ( F , A ) ` (/) ) = ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) |
| 5 | res0 | |- ( rec ( F , A ) |` (/) ) = (/) |
|
| 6 | 5 | fveq2i | |- ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) = ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) |
| 7 | 4 6 | eqtri | |- ( rec ( F , A ) ` (/) ) = ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) |
| 8 | iftrue | |- ( g = (/) -> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) = A ) |
|
| 9 | eqid | |- ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) |
|
| 10 | 8 9 | fvmptn | |- ( -. A e. _V -> ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) = (/) ) |
| 11 | 7 10 | eqtrid | |- ( -. A e. _V -> ( rec ( F , A ) ` (/) ) = (/) ) |