This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskxpss | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 | ⊢ ( 𝑧 ∈ ( 𝑇 × 𝑇 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑇 𝑧 = 〈 𝑥 , 𝑦 〉 ) | |
| 2 | tskop | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → 〈 𝑥 , 𝑦 〉 ∈ 𝑇 ) | |
| 3 | eleq1a | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑇 → ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) |
| 5 | 4 | 3expib | ⊢ ( 𝑇 ∈ Tarski → ( ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) ) |
| 6 | 5 | rexlimdvv | ⊢ ( 𝑇 ∈ Tarski → ( ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑇 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑧 ∈ 𝑇 ) ) |
| 7 | 1 6 | biimtrid | ⊢ ( 𝑇 ∈ Tarski → ( 𝑧 ∈ ( 𝑇 × 𝑇 ) → 𝑧 ∈ 𝑇 ) ) |
| 8 | 7 | ssrdv | ⊢ ( 𝑇 ∈ Tarski → ( 𝑇 × 𝑇 ) ⊆ 𝑇 ) |
| 9 | xpss12 | ⊢ ( ( 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) ) | |
| 10 | sstr | ⊢ ( ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) ∧ ( 𝑇 × 𝑇 ) ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) | |
| 11 | 10 | expcom | ⊢ ( ( 𝑇 × 𝑇 ) ⊆ 𝑇 → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝑇 × 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) ) |
| 12 | 8 9 11 | syl2im | ⊢ ( 𝑇 ∈ Tarski → ( ( 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) ) |
| 13 | 12 | 3impib | ⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇 ∧ 𝐵 ⊆ 𝑇 ) → ( 𝐴 × 𝐵 ) ⊆ 𝑇 ) |